{"title":"Nikishin系统的多级插值及二叉树上Jacobi矩阵的有界性","authors":"A. Aptekarev, V. Lysov","doi":"10.1070/RM10017","DOIUrl":null,"url":null,"abstract":"Modern applications [1] provide motivation to consider the tridiagonal Jacobi matrix (or the so-called discrete Schrödinger operator), a classical object of spectral theory, on graphs [2]. On homogeneous trees one method to implement such operators is based on Hermite–Padé interpolation problems (see [3]). Let μ⃗ = (μ1, . . . , μd) be a collection of positive Borel measures with compact supports on R. We denote by μ̂j(z) := ∫ (z−x)−1 dμj(x) their Cauchy transforms. For an arbitrary multi-index n⃗ ∈ Z+, we need to find polynomials qn⃗,0, qn⃗,1, . . . , qn⃗,d and pn⃗, pn⃗,1, . . . , pn⃗,d with deg pn⃗ = |n⃗| := n1 + · · · + nd such that the following interpolation conditions are satisfied as z →∞ for j = 1, . . . , d:","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multilevel interpolation for Nikishin systems and boundedness of Jacobi matrices on binary trees\",\"authors\":\"A. Aptekarev, V. Lysov\",\"doi\":\"10.1070/RM10017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern applications [1] provide motivation to consider the tridiagonal Jacobi matrix (or the so-called discrete Schrödinger operator), a classical object of spectral theory, on graphs [2]. On homogeneous trees one method to implement such operators is based on Hermite–Padé interpolation problems (see [3]). Let μ⃗ = (μ1, . . . , μd) be a collection of positive Borel measures with compact supports on R. We denote by μ̂j(z) := ∫ (z−x)−1 dμj(x) their Cauchy transforms. For an arbitrary multi-index n⃗ ∈ Z+, we need to find polynomials qn⃗,0, qn⃗,1, . . . , qn⃗,d and pn⃗, pn⃗,1, . . . , pn⃗,d with deg pn⃗ = |n⃗| := n1 + · · · + nd such that the following interpolation conditions are satisfied as z →∞ for j = 1, . . . , d:\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/RM10017\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM10017","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Multilevel interpolation for Nikishin systems and boundedness of Jacobi matrices on binary trees
Modern applications [1] provide motivation to consider the tridiagonal Jacobi matrix (or the so-called discrete Schrödinger operator), a classical object of spectral theory, on graphs [2]. On homogeneous trees one method to implement such operators is based on Hermite–Padé interpolation problems (see [3]). Let μ⃗ = (μ1, . . . , μd) be a collection of positive Borel measures with compact supports on R. We denote by μ̂j(z) := ∫ (z−x)−1 dμj(x) their Cauchy transforms. For an arbitrary multi-index n⃗ ∈ Z+, we need to find polynomials qn⃗,0, qn⃗,1, . . . , qn⃗,d and pn⃗, pn⃗,1, . . . , pn⃗,d with deg pn⃗ = |n⃗| := n1 + · · · + nd such that the following interpolation conditions are satisfied as z →∞ for j = 1, . . . , d:
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.