{"title":"三维流形上一维叶形奇异性的解析","authors":"J. Rebelo, H. Reis","doi":"10.1070/RM9993","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the resolution of singularities of holomorphic vector fields and one-dimensional holomorphic foliations in dimension three, and it has two main objectives. First, within the general framework of one-dimensional foliations, we build upon and essentially complete the work of Cano, Roche, and Spivakovsky (2014). As a consequence, we obtain a general resolution theorem comparable to the resolution theorem of McQuillan–Panazzolo (2013) but proved by means of rather different methods. The other objective of this paper is to consider a special class of singularities of foliations containing, in particular, all the singularities of complete holomorphic vector fields on complex manifolds of dimension three. We then prove that a much sharper resolution theorem holds for this class of holomorphic foliations. This second result was the initial motivation for this paper. It relies on combining earlier resolution theorems for (general) foliations with some classical material on asymptotic expansions for solutions of differential equations. Bibliography: 34 titles.","PeriodicalId":49582,"journal":{"name":"Russian Mathematical Surveys","volume":"76 1","pages":"291 - 355"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the resolution of singularities of one-dimensional foliations on three-manifolds\",\"authors\":\"J. Rebelo, H. Reis\",\"doi\":\"10.1070/RM9993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to the resolution of singularities of holomorphic vector fields and one-dimensional holomorphic foliations in dimension three, and it has two main objectives. First, within the general framework of one-dimensional foliations, we build upon and essentially complete the work of Cano, Roche, and Spivakovsky (2014). As a consequence, we obtain a general resolution theorem comparable to the resolution theorem of McQuillan–Panazzolo (2013) but proved by means of rather different methods. The other objective of this paper is to consider a special class of singularities of foliations containing, in particular, all the singularities of complete holomorphic vector fields on complex manifolds of dimension three. We then prove that a much sharper resolution theorem holds for this class of holomorphic foliations. This second result was the initial motivation for this paper. It relies on combining earlier resolution theorems for (general) foliations with some classical material on asymptotic expansions for solutions of differential equations. Bibliography: 34 titles.\",\"PeriodicalId\":49582,\"journal\":{\"name\":\"Russian Mathematical Surveys\",\"volume\":\"76 1\",\"pages\":\"291 - 355\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematical Surveys\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/RM9993\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematical Surveys","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM9993","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the resolution of singularities of one-dimensional foliations on three-manifolds
This paper is devoted to the resolution of singularities of holomorphic vector fields and one-dimensional holomorphic foliations in dimension three, and it has two main objectives. First, within the general framework of one-dimensional foliations, we build upon and essentially complete the work of Cano, Roche, and Spivakovsky (2014). As a consequence, we obtain a general resolution theorem comparable to the resolution theorem of McQuillan–Panazzolo (2013) but proved by means of rather different methods. The other objective of this paper is to consider a special class of singularities of foliations containing, in particular, all the singularities of complete holomorphic vector fields on complex manifolds of dimension three. We then prove that a much sharper resolution theorem holds for this class of holomorphic foliations. This second result was the initial motivation for this paper. It relies on combining earlier resolution theorems for (general) foliations with some classical material on asymptotic expansions for solutions of differential equations. Bibliography: 34 titles.
期刊介绍:
Russian Mathematical Surveys is a high-prestige journal covering a wide area of mathematics. The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The survey articles on current trends in mathematics are generally written by leading experts in the field at the request of the Editorial Board.