{"title":"等变最小模型程序","authors":"Yuri Prokhorov","doi":"10.1070/RM9990","DOIUrl":null,"url":null,"abstract":"The purpose of the survey is to systematize a vast amount of information about the minimal model program for varieties with group actions. We discuss the basic methods of the theory and give sketches of the proofs of some principal results. Bibliography: 243 titles.","PeriodicalId":49582,"journal":{"name":"Russian Mathematical Surveys","volume":"112 1","pages":"461 - 542"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Equivariant minimal model program\",\"authors\":\"Yuri Prokhorov\",\"doi\":\"10.1070/RM9990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of the survey is to systematize a vast amount of information about the minimal model program for varieties with group actions. We discuss the basic methods of the theory and give sketches of the proofs of some principal results. Bibliography: 243 titles.\",\"PeriodicalId\":49582,\"journal\":{\"name\":\"Russian Mathematical Surveys\",\"volume\":\"112 1\",\"pages\":\"461 - 542\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematical Surveys\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/RM9990\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematical Surveys","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM9990","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The purpose of the survey is to systematize a vast amount of information about the minimal model program for varieties with group actions. We discuss the basic methods of the theory and give sketches of the proofs of some principal results. Bibliography: 243 titles.
期刊介绍:
Russian Mathematical Surveys is a high-prestige journal covering a wide area of mathematics. The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The survey articles on current trends in mathematics are generally written by leading experts in the field at the request of the Editorial Board.