拉格朗日格拉斯曼完备交叉口的Landau-Ginzburg模型

IF 1.4 4区 数学 Q1 MATHEMATICS
V. Przyjalkowski, K. Rietsch
{"title":"拉格朗日格拉斯曼完备交叉口的Landau-Ginzburg模型","authors":"V. Przyjalkowski, K. Rietsch","doi":"10.1070/RM9984","DOIUrl":null,"url":null,"abstract":"Let LG(n) be the Lagrangian Grassmannian parameterizing the Lagrangian linear subspaces of the 2n-dimensional complex symplectic vector space. It has a Plücker embedding to a projective space P, so that for H = OP(1) we have Pic(LG(n)) = ZH. Let X ⊂ LG(n) be a smooth Fano complete intersection of degrees d1, . . . , dk. We have ∑k i=1 di < n + 1, and dk+1 = n + 1 − ∑k i=1 di is the Fano index of X. Let pi, i = 1, . . . , n, be formal variables. Consider the series","PeriodicalId":49582,"journal":{"name":"Russian Mathematical Surveys","volume":"76 1","pages":"549 - 551"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Landau–Ginzburg models of complete intersections in Lagrangian Grassmannians\",\"authors\":\"V. Przyjalkowski, K. Rietsch\",\"doi\":\"10.1070/RM9984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let LG(n) be the Lagrangian Grassmannian parameterizing the Lagrangian linear subspaces of the 2n-dimensional complex symplectic vector space. It has a Plücker embedding to a projective space P, so that for H = OP(1) we have Pic(LG(n)) = ZH. Let X ⊂ LG(n) be a smooth Fano complete intersection of degrees d1, . . . , dk. We have ∑k i=1 di < n + 1, and dk+1 = n + 1 − ∑k i=1 di is the Fano index of X. Let pi, i = 1, . . . , n, be formal variables. Consider the series\",\"PeriodicalId\":49582,\"journal\":{\"name\":\"Russian Mathematical Surveys\",\"volume\":\"76 1\",\"pages\":\"549 - 551\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematical Surveys\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/RM9984\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematical Surveys","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM9984","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设LG(n)为参数化2n维复辛向量空间的拉格朗日线性子空间的拉格朗日格拉斯曼函数。它有一个plencker嵌入到射影空间P中,因此对于H = OP(1)我们有Pic(LG(n)) = ZH。设X∧LG(n)是一个光滑的Fano完全交(d1,…)dk。我们有∑k1 = 1di < n +1, dk+1 = n +1−∑k1 = 1di是x的Fano指数,设pi, i=1,…, n是形式变量。考虑这个系列
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Landau–Ginzburg models of complete intersections in Lagrangian Grassmannians
Let LG(n) be the Lagrangian Grassmannian parameterizing the Lagrangian linear subspaces of the 2n-dimensional complex symplectic vector space. It has a Plücker embedding to a projective space P, so that for H = OP(1) we have Pic(LG(n)) = ZH. Let X ⊂ LG(n) be a smooth Fano complete intersection of degrees d1, . . . , dk. We have ∑k i=1 di < n + 1, and dk+1 = n + 1 − ∑k i=1 di is the Fano index of X. Let pi, i = 1, . . . , n, be formal variables. Consider the series
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Russian Mathematical Surveys is a high-prestige journal covering a wide area of mathematics. The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The survey articles on current trends in mathematics are generally written by leading experts in the field at the request of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信