牛顿多面体和热带几何

IF 1.4 4区 数学 Q1 MATHEMATICS
Boris Yakovlevich Kazarnovskii, A. Khovanskii, A. Esterov
{"title":"牛顿多面体和热带几何","authors":"Boris Yakovlevich Kazarnovskii, A. Khovanskii, A. Esterov","doi":"10.1070/RM9937","DOIUrl":null,"url":null,"abstract":"The practice of bringing together the concepts of ‘Newton polytopes’, ‘toric varieties’, ‘tropical geometry’, and ‘Gröbner bases’ has led to the formation of stable and mutually beneficial connections between algebraic geometry and convex geometry. This survey is devoted to the current state of the area of mathematics that describes the interaction and applications of these concepts. Bibliography: 68 titles.","PeriodicalId":49582,"journal":{"name":"Russian Mathematical Surveys","volume":"76 1","pages":"91 - 175"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Newton polytopes and tropical geometry\",\"authors\":\"Boris Yakovlevich Kazarnovskii, A. Khovanskii, A. Esterov\",\"doi\":\"10.1070/RM9937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The practice of bringing together the concepts of ‘Newton polytopes’, ‘toric varieties’, ‘tropical geometry’, and ‘Gröbner bases’ has led to the formation of stable and mutually beneficial connections between algebraic geometry and convex geometry. This survey is devoted to the current state of the area of mathematics that describes the interaction and applications of these concepts. Bibliography: 68 titles.\",\"PeriodicalId\":49582,\"journal\":{\"name\":\"Russian Mathematical Surveys\",\"volume\":\"76 1\",\"pages\":\"91 - 175\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematical Surveys\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/RM9937\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematical Surveys","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM9937","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

将“牛顿多面体”、“环面变异”、“热带几何”和“Gröbner基”等概念结合在一起的实践,导致代数几何和凸几何之间形成了稳定和互利的联系。本调查致力于描述这些概念的相互作用和应用的数学领域的现状。参考书目:68种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Newton polytopes and tropical geometry
The practice of bringing together the concepts of ‘Newton polytopes’, ‘toric varieties’, ‘tropical geometry’, and ‘Gröbner bases’ has led to the formation of stable and mutually beneficial connections between algebraic geometry and convex geometry. This survey is devoted to the current state of the area of mathematics that describes the interaction and applications of these concepts. Bibliography: 68 titles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Russian Mathematical Surveys is a high-prestige journal covering a wide area of mathematics. The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The survey articles on current trends in mathematics are generally written by leading experts in the field at the request of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信