{"title":"螺线管场中的球","authors":"A. Borisov, A. Tsiganov","doi":"10.1070/RM9930","DOIUrl":null,"url":null,"abstract":"According to Dirac, changes in the equations of motion related to additional external forces performing no work can be described in terms of deformations of the Poisson bracket. It is natural to ask whether or not Dirac’s ideas are valid in non-holonomic mechanics. We discuss this question here by taking the Chaplygin ball as an example. We consider the linear Lie–Poisson bracket on the Lie algebra e∗(3):","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chaplygin ball in a solenoidal field\",\"authors\":\"A. Borisov, A. Tsiganov\",\"doi\":\"10.1070/RM9930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to Dirac, changes in the equations of motion related to additional external forces performing no work can be described in terms of deformations of the Poisson bracket. It is natural to ask whether or not Dirac’s ideas are valid in non-holonomic mechanics. We discuss this question here by taking the Chaplygin ball as an example. We consider the linear Lie–Poisson bracket on the Lie algebra e∗(3):\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/RM9930\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM9930","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
According to Dirac, changes in the equations of motion related to additional external forces performing no work can be described in terms of deformations of the Poisson bracket. It is natural to ask whether or not Dirac’s ideas are valid in non-holonomic mechanics. We discuss this question here by taking the Chaplygin ball as an example. We consider the linear Lie–Poisson bracket on the Lie algebra e∗(3):
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.