具有退化二次部的双曲Roussarie域

IF 1.4 4区 数学 Q1 MATHEMATICS
N. G. Pavlova, A. O. Remizov
{"title":"具有退化二次部的双曲Roussarie域","authors":"N. G. Pavlova, A. O. Remizov","doi":"10.1070/RM9893","DOIUrl":null,"url":null,"abstract":"In many problems in analysis and geometry there is a need to investigate vector fields with singular points that are not isolated but rather form a submanifold of the phase space, which most often has codimension 2. Of primary interest are the local orbital normal forms of such fields. ‘Orbital’ means that we may multiply vector fields by scalar functions with constant sign. In what follows, all vector fields and functions are assumed without mention to be smooth (of class C∞) unless otherwise stated. Roussarie [1] investigated vector fields of a certain special type which satisfy the following conditions at all singular points: 1) the components of the field lie in the ideal (of the space of smooth functions) generated by two of the components; 2) the divergence of the vector field (the trace of its linear part) is zero. We call such fields R-fields after Roussarie. In local coordinates the germ of an R-field has the following form at its singular point:","PeriodicalId":49582,"journal":{"name":"Russian Mathematical Surveys","volume":"76 1","pages":"366 - 368"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperbolic Roussarie fields with degenerate quadratic part\",\"authors\":\"N. G. Pavlova, A. O. Remizov\",\"doi\":\"10.1070/RM9893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many problems in analysis and geometry there is a need to investigate vector fields with singular points that are not isolated but rather form a submanifold of the phase space, which most often has codimension 2. Of primary interest are the local orbital normal forms of such fields. ‘Orbital’ means that we may multiply vector fields by scalar functions with constant sign. In what follows, all vector fields and functions are assumed without mention to be smooth (of class C∞) unless otherwise stated. Roussarie [1] investigated vector fields of a certain special type which satisfy the following conditions at all singular points: 1) the components of the field lie in the ideal (of the space of smooth functions) generated by two of the components; 2) the divergence of the vector field (the trace of its linear part) is zero. We call such fields R-fields after Roussarie. In local coordinates the germ of an R-field has the following form at its singular point:\",\"PeriodicalId\":49582,\"journal\":{\"name\":\"Russian Mathematical Surveys\",\"volume\":\"76 1\",\"pages\":\"366 - 368\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematical Surveys\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/RM9893\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematical Surveys","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM9893","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在分析和几何中的许多问题中,需要研究具有奇异点的向量场,这些奇异点不是孤立的,而是形成相空间的子流形,通常具有余维数2。我们最感兴趣的是这些场的局部轨道范式。“轨道”意味着我们可以用带常数的标量函数乘以向量场。在接下来的内容中,除非另有说明,否则假定所有向量场和函数都是光滑的(C∞类)。Roussarie[1]研究了一类特殊类型的向量场,它在所有奇点处都满足以下条件:1)该场的分量位于由其中两个分量生成的理想(光滑函数空间)中;2)向量场的散度(其线性部分的迹)为零。我们以Roussarie的名字将这种领域称为R-fields。在局部坐标系中,r场的根在奇点处有如下形式:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperbolic Roussarie fields with degenerate quadratic part
In many problems in analysis and geometry there is a need to investigate vector fields with singular points that are not isolated but rather form a submanifold of the phase space, which most often has codimension 2. Of primary interest are the local orbital normal forms of such fields. ‘Orbital’ means that we may multiply vector fields by scalar functions with constant sign. In what follows, all vector fields and functions are assumed without mention to be smooth (of class C∞) unless otherwise stated. Roussarie [1] investigated vector fields of a certain special type which satisfy the following conditions at all singular points: 1) the components of the field lie in the ideal (of the space of smooth functions) generated by two of the components; 2) the divergence of the vector field (the trace of its linear part) is zero. We call such fields R-fields after Roussarie. In local coordinates the germ of an R-field has the following form at its singular point:
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Russian Mathematical Surveys is a high-prestige journal covering a wide area of mathematics. The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The survey articles on current trends in mathematics are generally written by leading experts in the field at the request of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信