描述细菌种群的非紧边界条件数学模型

M. Boulanouar
{"title":"描述细菌种群的非紧边界条件数学模型","authors":"M. Boulanouar","doi":"10.1080/00411450.2013.866144","DOIUrl":null,"url":null,"abstract":"In this work, we are concerned with the well-posedness of a mathematical model describing a maturation-velocity structured bacterial population. Each bacterium is distinguished by its degree of maturity and its maturation velocity. The bacterial mitosis is mathematically described by noncompact boundary conditions. We show that the mathematical model is governed by a positive strongly continuous semigroup.","PeriodicalId":49420,"journal":{"name":"Transport Theory and Statistical Physics","volume":"42 1","pages":"130 - 99"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00411450.2013.866144","citationCount":"3","resultStr":"{\"title\":\"On a Mathematical Model with Noncompact Boundary Conditions Describing Bacterial Population\",\"authors\":\"M. Boulanouar\",\"doi\":\"10.1080/00411450.2013.866144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we are concerned with the well-posedness of a mathematical model describing a maturation-velocity structured bacterial population. Each bacterium is distinguished by its degree of maturity and its maturation velocity. The bacterial mitosis is mathematically described by noncompact boundary conditions. We show that the mathematical model is governed by a positive strongly continuous semigroup.\",\"PeriodicalId\":49420,\"journal\":{\"name\":\"Transport Theory and Statistical Physics\",\"volume\":\"42 1\",\"pages\":\"130 - 99\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/00411450.2013.866144\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport Theory and Statistical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00411450.2013.866144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport Theory and Statistical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00411450.2013.866144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项工作中,我们关注的是描述成熟速度结构细菌种群的数学模型的完备性。每一种细菌都以其成熟程度和成熟速度来区分。细菌有丝分裂用非紧致边界条件进行数学描述。我们证明了数学模型是由一个正强连续半群控制的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a Mathematical Model with Noncompact Boundary Conditions Describing Bacterial Population
In this work, we are concerned with the well-posedness of a mathematical model describing a maturation-velocity structured bacterial population. Each bacterium is distinguished by its degree of maturity and its maturation velocity. The bacterial mitosis is mathematically described by noncompact boundary conditions. We show that the mathematical model is governed by a positive strongly continuous semigroup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transport Theory and Statistical Physics
Transport Theory and Statistical Physics 物理-物理:数学物理
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信