D. Rostamy, F. Zabihi, A. Niroomand, A. Mollazeynal
{"title":"求解非局部守恒波动方程的有限元新方法","authors":"D. Rostamy, F. Zabihi, A. Niroomand, A. Mollazeynal","doi":"10.1080/00411450.2013.838792","DOIUrl":null,"url":null,"abstract":"A wave equation with a nonlocal boundary condition is considered. Then we purpose a new finite element method for solving this equation. Also, we obtain a priori and a posteriori error estimates. The theory is illustrated by some numerical examples.","PeriodicalId":49420,"journal":{"name":"Transport Theory and Statistical Physics","volume":"42 1","pages":"41 - 62"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00411450.2013.838792","citationCount":"2","resultStr":"{\"title\":\"New Finite Element Method for Solving a Wave Equation with a Nonlocal Conservation Condition\",\"authors\":\"D. Rostamy, F. Zabihi, A. Niroomand, A. Mollazeynal\",\"doi\":\"10.1080/00411450.2013.838792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A wave equation with a nonlocal boundary condition is considered. Then we purpose a new finite element method for solving this equation. Also, we obtain a priori and a posteriori error estimates. The theory is illustrated by some numerical examples.\",\"PeriodicalId\":49420,\"journal\":{\"name\":\"Transport Theory and Statistical Physics\",\"volume\":\"42 1\",\"pages\":\"41 - 62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/00411450.2013.838792\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport Theory and Statistical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00411450.2013.838792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport Theory and Statistical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00411450.2013.838792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New Finite Element Method for Solving a Wave Equation with a Nonlocal Conservation Condition
A wave equation with a nonlocal boundary condition is considered. Then we purpose a new finite element method for solving this equation. Also, we obtain a priori and a posteriori error estimates. The theory is illustrated by some numerical examples.