求解非局部守恒波动方程的有限元新方法

D. Rostamy, F. Zabihi, A. Niroomand, A. Mollazeynal
{"title":"求解非局部守恒波动方程的有限元新方法","authors":"D. Rostamy, F. Zabihi, A. Niroomand, A. Mollazeynal","doi":"10.1080/00411450.2013.838792","DOIUrl":null,"url":null,"abstract":"A wave equation with a nonlocal boundary condition is considered. Then we purpose a new finite element method for solving this equation. Also, we obtain a priori and a posteriori error estimates. The theory is illustrated by some numerical examples.","PeriodicalId":49420,"journal":{"name":"Transport Theory and Statistical Physics","volume":"42 1","pages":"41 - 62"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00411450.2013.838792","citationCount":"2","resultStr":"{\"title\":\"New Finite Element Method for Solving a Wave Equation with a Nonlocal Conservation Condition\",\"authors\":\"D. Rostamy, F. Zabihi, A. Niroomand, A. Mollazeynal\",\"doi\":\"10.1080/00411450.2013.838792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A wave equation with a nonlocal boundary condition is considered. Then we purpose a new finite element method for solving this equation. Also, we obtain a priori and a posteriori error estimates. The theory is illustrated by some numerical examples.\",\"PeriodicalId\":49420,\"journal\":{\"name\":\"Transport Theory and Statistical Physics\",\"volume\":\"42 1\",\"pages\":\"41 - 62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/00411450.2013.838792\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport Theory and Statistical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00411450.2013.838792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport Theory and Statistical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00411450.2013.838792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

考虑具有非局部边界条件的波动方程。然后我们提出了一种新的有限元方法来求解该方程。此外,我们还获得了先验和后验误差估计。通过数值算例说明了该理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Finite Element Method for Solving a Wave Equation with a Nonlocal Conservation Condition
A wave equation with a nonlocal boundary condition is considered. Then we purpose a new finite element method for solving this equation. Also, we obtain a priori and a posteriori error estimates. The theory is illustrated by some numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transport Theory and Statistical Physics
Transport Theory and Statistical Physics 物理-物理:数学物理
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信