{"title":"输运方程的球谐和半离散有限元近似","authors":"M. Asadzadeh, Tobias Gebäck","doi":"10.1080/00411450.2012.671206","DOIUrl":null,"url":null,"abstract":"This work is the first part in a series of two articles, where the objective is to construct, analyze, and implement realistic particle transport models relevant in applications in radiation cancer therapy. Here we use spherical harmonics and derive an energy-dependent model problem for the transport equation. Then we show stability and derive optimal convergence rates for semidiscrete (discretization in energy) finite element approximations of this model problem. The fully discrete problem that also considers the study of finite element discretizations in radial and spatial domains as well is the subject of a forthcoming article.","PeriodicalId":49420,"journal":{"name":"Transport Theory and Statistical Physics","volume":"41 1","pages":"53 - 70"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00411450.2012.671206","citationCount":"2","resultStr":"{\"title\":\"Spherical Harmonics and a Semidiscrete Finite Element Approximation for the Transport Equation\",\"authors\":\"M. Asadzadeh, Tobias Gebäck\",\"doi\":\"10.1080/00411450.2012.671206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is the first part in a series of two articles, where the objective is to construct, analyze, and implement realistic particle transport models relevant in applications in radiation cancer therapy. Here we use spherical harmonics and derive an energy-dependent model problem for the transport equation. Then we show stability and derive optimal convergence rates for semidiscrete (discretization in energy) finite element approximations of this model problem. The fully discrete problem that also considers the study of finite element discretizations in radial and spatial domains as well is the subject of a forthcoming article.\",\"PeriodicalId\":49420,\"journal\":{\"name\":\"Transport Theory and Statistical Physics\",\"volume\":\"41 1\",\"pages\":\"53 - 70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/00411450.2012.671206\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport Theory and Statistical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00411450.2012.671206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport Theory and Statistical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00411450.2012.671206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spherical Harmonics and a Semidiscrete Finite Element Approximation for the Transport Equation
This work is the first part in a series of two articles, where the objective is to construct, analyze, and implement realistic particle transport models relevant in applications in radiation cancer therapy. Here we use spherical harmonics and derive an energy-dependent model problem for the transport equation. Then we show stability and derive optimal convergence rates for semidiscrete (discretization in energy) finite element approximations of this model problem. The fully discrete problem that also considers the study of finite element discretizations in radial and spatial domains as well is the subject of a forthcoming article.