{"title":"求解第二类Fredholm积分方程的蒙特卡罗方法","authors":"Hong Zhimin, Yan Zaizai, Chen Jian-rui","doi":"10.1080/00411450.2012.695317","DOIUrl":null,"url":null,"abstract":"This article is concerned with a numerical algorithm for solving approximate solutions of Fredholm integral equations of the second kind with random sampling. We use Simpson’s rule for solving integral equations, which yields a linear system. The Monte Carlo method, based on the simulation of a finite discrete Markov chain, is employed to solve this linear system. To show the efficiency of the method, we use numerical examples. Results obtained by the present method indicate that the method is an effective alternate method.","PeriodicalId":49420,"journal":{"name":"Transport Theory and Statistical Physics","volume":"41 1","pages":"513 - 528"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00411450.2012.695317","citationCount":"26","resultStr":"{\"title\":\"Monte Carlo Method for Solving the Fredholm Integral Equations of the Second Kind\",\"authors\":\"Hong Zhimin, Yan Zaizai, Chen Jian-rui\",\"doi\":\"10.1080/00411450.2012.695317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is concerned with a numerical algorithm for solving approximate solutions of Fredholm integral equations of the second kind with random sampling. We use Simpson’s rule for solving integral equations, which yields a linear system. The Monte Carlo method, based on the simulation of a finite discrete Markov chain, is employed to solve this linear system. To show the efficiency of the method, we use numerical examples. Results obtained by the present method indicate that the method is an effective alternate method.\",\"PeriodicalId\":49420,\"journal\":{\"name\":\"Transport Theory and Statistical Physics\",\"volume\":\"41 1\",\"pages\":\"513 - 528\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/00411450.2012.695317\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport Theory and Statistical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00411450.2012.695317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport Theory and Statistical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00411450.2012.695317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monte Carlo Method for Solving the Fredholm Integral Equations of the Second Kind
This article is concerned with a numerical algorithm for solving approximate solutions of Fredholm integral equations of the second kind with random sampling. We use Simpson’s rule for solving integral equations, which yields a linear system. The Monte Carlo method, based on the simulation of a finite discrete Markov chain, is employed to solve this linear system. To show the efficiency of the method, we use numerical examples. Results obtained by the present method indicate that the method is an effective alternate method.