SPN求解器MINOS的域分解

E. Jamelot, A. Baudron, J. Lautard
{"title":"SPN求解器MINOS的域分解","authors":"E. Jamelot, A. Baudron, J. Lautard","doi":"10.1080/00411450.2012.694827","DOIUrl":null,"url":null,"abstract":"In this article we present a domain decomposition method for the mixed SPN equations, discretized with Raviart-Thomas-Nédélec finite elements. This domain decomposition is based on the iterative Schwarz algorithm with Robin interface conditions to handle communications. After having described this method, we give details on how to optimize the convergence. Finally, we give some numerical results computed in a realistic 3D domain. The computations are done with the MINOS solver of the APOLLO3® code.","PeriodicalId":49420,"journal":{"name":"Transport Theory and Statistical Physics","volume":"41 1","pages":"495 - 512"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00411450.2012.694827","citationCount":"11","resultStr":"{\"title\":\"Domain Decomposition for the SPN Solver MINOS\",\"authors\":\"E. Jamelot, A. Baudron, J. Lautard\",\"doi\":\"10.1080/00411450.2012.694827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we present a domain decomposition method for the mixed SPN equations, discretized with Raviart-Thomas-Nédélec finite elements. This domain decomposition is based on the iterative Schwarz algorithm with Robin interface conditions to handle communications. After having described this method, we give details on how to optimize the convergence. Finally, we give some numerical results computed in a realistic 3D domain. The computations are done with the MINOS solver of the APOLLO3® code.\",\"PeriodicalId\":49420,\"journal\":{\"name\":\"Transport Theory and Statistical Physics\",\"volume\":\"41 1\",\"pages\":\"495 - 512\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/00411450.2012.694827\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport Theory and Statistical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00411450.2012.694827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport Theory and Statistical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00411450.2012.694827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文给出了用raviart - thomas - nsamdsamlec有限元离散的混合SPN方程的一种区域分解方法。该领域分解基于迭代Schwarz算法,采用Robin接口条件处理通信。在描述了这种方法之后,我们详细说明了如何优化收敛性。最后给出了在实际三维环境下的数值计算结果。计算是用APOLLO3®代码的MINOS求解器完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Domain Decomposition for the SPN Solver MINOS
In this article we present a domain decomposition method for the mixed SPN equations, discretized with Raviart-Thomas-Nédélec finite elements. This domain decomposition is based on the iterative Schwarz algorithm with Robin interface conditions to handle communications. After having described this method, we give details on how to optimize the convergence. Finally, we give some numerical results computed in a realistic 3D domain. The computations are done with the MINOS solver of the APOLLO3® code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transport Theory and Statistical Physics
Transport Theory and Statistical Physics 物理-物理:数学物理
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信