时变辐射输运角近似方法的矩分析

J. Densmore, R. McClarren
{"title":"时变辐射输运角近似方法的矩分析","authors":"J. Densmore, R. McClarren","doi":"10.1080/00411450.2010.533742","DOIUrl":null,"url":null,"abstract":"We extend moment analysis, a technique developed for investigating the accuracy of discrete-ordinates spatial discretization schemes, to time-dependent radiation transport and apply it to several angular approximation methods. Specifically, we examine the diffusion approximation, the P 1/3 approximation, and three time-dependent generalizations of the simplified PNapproximation: the SP 2 , SP 3 , and SSP 3 approximations. We show that all of the these methods preserve the correct flux-weighted average of x but not the correct flux-weighted average of (x-xa)2, where x is the spatial variable and xais an arbitrary point. We also demonstrate that, for general cross sections and large elapsed time, the error in the flux-weighted average of (x-xa)2 is smallest in magnitude for the SP 2 and approximations. In addition, we present a simple improvement to the SP 2 approximation that allows this method to produce the correct flux-weighted average of (x-xa)2. We present numerical results that test this analysis. From these results, we find that the angular approximation methods with the most accurate solutions also have the most accurate values for the flux-weighted average of (x-xa)2. In particular, the SP 2 and SP 3 approximations are two of the most accurate methods at large elapsed times, while the improved SP 2 approximation is one of the most accurate methods at all times. We also observe, however, that an accurate value for the flux-weighted average of (x-xa)2 is not always accompanied by an accurate solution. Consequently, we conclude that an accurate flux-weighted average of (x-xa)2 is a necessary rather than sufficient condition for an overall accurate angular approximation method.","PeriodicalId":49420,"journal":{"name":"Transport Theory and Statistical Physics","volume":"39 1","pages":"192 - 233"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00411450.2010.533742","citationCount":"6","resultStr":"{\"title\":\"Moment Analysis of Angular APproximation Methods for Time-Dependent Radiation Transport\",\"authors\":\"J. Densmore, R. McClarren\",\"doi\":\"10.1080/00411450.2010.533742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend moment analysis, a technique developed for investigating the accuracy of discrete-ordinates spatial discretization schemes, to time-dependent radiation transport and apply it to several angular approximation methods. Specifically, we examine the diffusion approximation, the P 1/3 approximation, and three time-dependent generalizations of the simplified PNapproximation: the SP 2 , SP 3 , and SSP 3 approximations. We show that all of the these methods preserve the correct flux-weighted average of x but not the correct flux-weighted average of (x-xa)2, where x is the spatial variable and xais an arbitrary point. We also demonstrate that, for general cross sections and large elapsed time, the error in the flux-weighted average of (x-xa)2 is smallest in magnitude for the SP 2 and approximations. In addition, we present a simple improvement to the SP 2 approximation that allows this method to produce the correct flux-weighted average of (x-xa)2. We present numerical results that test this analysis. From these results, we find that the angular approximation methods with the most accurate solutions also have the most accurate values for the flux-weighted average of (x-xa)2. In particular, the SP 2 and SP 3 approximations are two of the most accurate methods at large elapsed times, while the improved SP 2 approximation is one of the most accurate methods at all times. We also observe, however, that an accurate value for the flux-weighted average of (x-xa)2 is not always accompanied by an accurate solution. Consequently, we conclude that an accurate flux-weighted average of (x-xa)2 is a necessary rather than sufficient condition for an overall accurate angular approximation method.\",\"PeriodicalId\":49420,\"journal\":{\"name\":\"Transport Theory and Statistical Physics\",\"volume\":\"39 1\",\"pages\":\"192 - 233\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/00411450.2010.533742\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport Theory and Statistical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00411450.2010.533742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport Theory and Statistical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00411450.2010.533742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们将矩分析(一种为研究离散坐标空间离散化方案的准确性而开发的技术)扩展到随时间的辐射输运,并将其应用于几种角近似方法。具体来说,我们研究了扩散近似、p1 /3近似和简化pn近似的三种随时间的推广:sp2、sp3和ssp3近似。我们证明,所有这些方法都保留了x的正确通量加权平均值,但不是(x-xa)2的正确通量加权平均值,其中x是空间变量,x是任意点。我们还证明,对于一般截面和大的经过时间,(x-xa)2的通量加权平均值的误差在SP 2和近似值中是最小的。此外,我们提出了对SP 2近似的一个简单改进,使该方法能够产生正确的(x-xa)2的通量加权平均值。我们给出了数值结果来验证这一分析。从这些结果中,我们发现具有最精确解的角近似方法也具有最精确的通量加权平均值(x-xa)2的值。特别是,SP 2和SP 3近似值是两个最准确的方法在大的经过时间,而改进的SP 2近似值是一个最准确的方法在任何时候。然而,我们还观察到,(x-xa)2的通量加权平均值的准确值并不总是伴随着准确的解。因此,我们得出结论,(x-xa)2的精确通量加权平均值是全面精确的角近似方法的必要条件而不是充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moment Analysis of Angular APproximation Methods for Time-Dependent Radiation Transport
We extend moment analysis, a technique developed for investigating the accuracy of discrete-ordinates spatial discretization schemes, to time-dependent radiation transport and apply it to several angular approximation methods. Specifically, we examine the diffusion approximation, the P 1/3 approximation, and three time-dependent generalizations of the simplified PNapproximation: the SP 2 , SP 3 , and SSP 3 approximations. We show that all of the these methods preserve the correct flux-weighted average of x but not the correct flux-weighted average of (x-xa)2, where x is the spatial variable and xais an arbitrary point. We also demonstrate that, for general cross sections and large elapsed time, the error in the flux-weighted average of (x-xa)2 is smallest in magnitude for the SP 2 and approximations. In addition, we present a simple improvement to the SP 2 approximation that allows this method to produce the correct flux-weighted average of (x-xa)2. We present numerical results that test this analysis. From these results, we find that the angular approximation methods with the most accurate solutions also have the most accurate values for the flux-weighted average of (x-xa)2. In particular, the SP 2 and SP 3 approximations are two of the most accurate methods at large elapsed times, while the improved SP 2 approximation is one of the most accurate methods at all times. We also observe, however, that an accurate value for the flux-weighted average of (x-xa)2 is not always accompanied by an accurate solution. Consequently, we conclude that an accurate flux-weighted average of (x-xa)2 is a necessary rather than sufficient condition for an overall accurate angular approximation method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transport Theory and Statistical Physics
Transport Theory and Statistical Physics 物理-物理:数学物理
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信