{"title":"甜菜(Beta vulgaris)干旱响应microrna的鉴定与功能预测","authors":"C. Zou, Zhiqiang Guo, Shanshan Zhao, Jishuai Chen","doi":"10.1071/cp22359","DOIUrl":null,"url":null,"abstract":"ABSTRACT Context. Drought is a common abiotic stress affecting crop yield and quality worldwide. Sugar beet (Beta vulgaris L.) is a temperate crop that contributes greatly to world sucrose production and is affected by frequent drought. MicroRNAs (miRNAs) have been demonstrated to play an important role in plant abiotic stress responses. Protein-coding genes associated with drought resistance have been identified in sugar beet; however, studies on miRNAs involved in drought stress response are lacking. Aims. The present study focused on analysing miRNAs in sugar beet and their roles in drought stress response. Method. Small-RNA libraries were constructed from leaves of plants subjected to drought stress and well-watered conditions. High-throughput sequencing and bioinformatics analysis were used to investigate the genome-wide quantity of miRNAs and identify possible drought response regulatory effects. Key results. Deep sequencing identified 49 known miRNAs and 59 new miRNAs. According to the Kyoto Encyclopaedia of Genes and Genomes (KEGG), the sulfur relay system was significantly enriched under drought stress. Co-regulated pairs between miR156a-5p, novel_18 and novel_41, and their target genes BVRB_6g136190, BVRB_009610 and BVRB_6g136680 were observed, suggesting a negative feedback modulation involved in the miRNA pathways. Conclusions. Our results indicate that certain metabolic pathways such as the sulfur relay system are activated under drought conditions. Implications. The results aid understanding of the mechanisms of drought response at the molecular level and may enable tools to be devised that enhance drought resistance in sugar beet.","PeriodicalId":51237,"journal":{"name":"Crop & Pasture Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and prediction of functions for drought-responsive microRNAs in sugar beet (Beta vulgaris)\",\"authors\":\"C. Zou, Zhiqiang Guo, Shanshan Zhao, Jishuai Chen\",\"doi\":\"10.1071/cp22359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Context. Drought is a common abiotic stress affecting crop yield and quality worldwide. Sugar beet (Beta vulgaris L.) is a temperate crop that contributes greatly to world sucrose production and is affected by frequent drought. MicroRNAs (miRNAs) have been demonstrated to play an important role in plant abiotic stress responses. Protein-coding genes associated with drought resistance have been identified in sugar beet; however, studies on miRNAs involved in drought stress response are lacking. Aims. The present study focused on analysing miRNAs in sugar beet and their roles in drought stress response. Method. Small-RNA libraries were constructed from leaves of plants subjected to drought stress and well-watered conditions. High-throughput sequencing and bioinformatics analysis were used to investigate the genome-wide quantity of miRNAs and identify possible drought response regulatory effects. Key results. Deep sequencing identified 49 known miRNAs and 59 new miRNAs. According to the Kyoto Encyclopaedia of Genes and Genomes (KEGG), the sulfur relay system was significantly enriched under drought stress. Co-regulated pairs between miR156a-5p, novel_18 and novel_41, and their target genes BVRB_6g136190, BVRB_009610 and BVRB_6g136680 were observed, suggesting a negative feedback modulation involved in the miRNA pathways. Conclusions. Our results indicate that certain metabolic pathways such as the sulfur relay system are activated under drought conditions. Implications. The results aid understanding of the mechanisms of drought response at the molecular level and may enable tools to be devised that enhance drought resistance in sugar beet.\",\"PeriodicalId\":51237,\"journal\":{\"name\":\"Crop & Pasture Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop & Pasture Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1071/cp22359\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop & Pasture Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1071/cp22359","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Identification and prediction of functions for drought-responsive microRNAs in sugar beet (Beta vulgaris)
ABSTRACT Context. Drought is a common abiotic stress affecting crop yield and quality worldwide. Sugar beet (Beta vulgaris L.) is a temperate crop that contributes greatly to world sucrose production and is affected by frequent drought. MicroRNAs (miRNAs) have been demonstrated to play an important role in plant abiotic stress responses. Protein-coding genes associated with drought resistance have been identified in sugar beet; however, studies on miRNAs involved in drought stress response are lacking. Aims. The present study focused on analysing miRNAs in sugar beet and their roles in drought stress response. Method. Small-RNA libraries were constructed from leaves of plants subjected to drought stress and well-watered conditions. High-throughput sequencing and bioinformatics analysis were used to investigate the genome-wide quantity of miRNAs and identify possible drought response regulatory effects. Key results. Deep sequencing identified 49 known miRNAs and 59 new miRNAs. According to the Kyoto Encyclopaedia of Genes and Genomes (KEGG), the sulfur relay system was significantly enriched under drought stress. Co-regulated pairs between miR156a-5p, novel_18 and novel_41, and their target genes BVRB_6g136190, BVRB_009610 and BVRB_6g136680 were observed, suggesting a negative feedback modulation involved in the miRNA pathways. Conclusions. Our results indicate that certain metabolic pathways such as the sulfur relay system are activated under drought conditions. Implications. The results aid understanding of the mechanisms of drought response at the molecular level and may enable tools to be devised that enhance drought resistance in sugar beet.
期刊介绍:
Crop and Pasture Science (formerly known as Australian Journal of Agricultural Research) is an international journal publishing outcomes of strategic research in crop and pasture sciences and the sustainability of farming systems. The primary focus is broad-scale cereals, grain legumes, oilseeds and pastures. Articles are encouraged that advance understanding in plant-based agricultural systems through the use of well-defined and original aims designed to test a hypothesis, innovative and rigorous experimental design, and strong interpretation. The journal embraces experimental approaches from molecular level to whole systems, and the research must present novel findings and progress the science of agriculture.
Crop and Pasture Science is read by agricultural scientists and plant biologists, industry, administrators, policy-makers, and others with an interest in the challenges and opportunities facing world agricultural production.
Crop and Pasture Science is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.