Sarah K. Speed, Krishna Gupta, Yu-Hsuan Peng, Syuan Ku Hsiao, Elisha Krieg
{"title":"可编程高分子材料由DNA纳米技术授权","authors":"Sarah K. Speed, Krishna Gupta, Yu-Hsuan Peng, Syuan Ku Hsiao, Elisha Krieg","doi":"10.1002/pol.20230160","DOIUrl":null,"url":null,"abstract":"<p>Over the past century, synthetic polymers have had a transformative impact on human life, replacing nature-derived materials in many areas. Yet, despite their many advantages, the structure and function of synthetic polymers still appear rudimentary compared to biological matter: cells use dynamic self-assembly to construct complex materials and operate sophisticated macromolecular devices. The field of DNA nanotechnology has demonstrated that synthetic DNA molecules can be programmed to undergo predictable self-assembly, offering unparalleled control over the formation and dynamic properties of artificial nanostructures. Intriguingly, the principles of DNA nanotechnology can be applied to the engineering of soft programmable materials, bringing the abilities of synthetic polymers closer to their biological counterparts. In this perspective, we discuss the unique features of DNA-functionalized polymer materials. We describe design principles that allow researchers to build complex supramolecular architectures with predictable and dynamically adjustable material properties. Finally, we highlight two key application areas where this biologically inspired material class offers particularly promising opportunities: (1) as dynamic matrices for 3D cell and organoid culture and (2) as smart materials for nucleic acid sequencing and pathogen detection.</p>","PeriodicalId":199,"journal":{"name":"Journal of Polymer Science Part A: Polymer Chemistry","volume":"61 16","pages":"1713-1729"},"PeriodicalIF":2.7020,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pol.20230160","citationCount":"2","resultStr":"{\"title\":\"Programmable polymer materials empowered by DNA nanotechnology\",\"authors\":\"Sarah K. Speed, Krishna Gupta, Yu-Hsuan Peng, Syuan Ku Hsiao, Elisha Krieg\",\"doi\":\"10.1002/pol.20230160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Over the past century, synthetic polymers have had a transformative impact on human life, replacing nature-derived materials in many areas. Yet, despite their many advantages, the structure and function of synthetic polymers still appear rudimentary compared to biological matter: cells use dynamic self-assembly to construct complex materials and operate sophisticated macromolecular devices. The field of DNA nanotechnology has demonstrated that synthetic DNA molecules can be programmed to undergo predictable self-assembly, offering unparalleled control over the formation and dynamic properties of artificial nanostructures. Intriguingly, the principles of DNA nanotechnology can be applied to the engineering of soft programmable materials, bringing the abilities of synthetic polymers closer to their biological counterparts. In this perspective, we discuss the unique features of DNA-functionalized polymer materials. We describe design principles that allow researchers to build complex supramolecular architectures with predictable and dynamically adjustable material properties. Finally, we highlight two key application areas where this biologically inspired material class offers particularly promising opportunities: (1) as dynamic matrices for 3D cell and organoid culture and (2) as smart materials for nucleic acid sequencing and pathogen detection.</p>\",\"PeriodicalId\":199,\"journal\":{\"name\":\"Journal of Polymer Science Part A: Polymer Chemistry\",\"volume\":\"61 16\",\"pages\":\"1713-1729\"},\"PeriodicalIF\":2.7020,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pol.20230160\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Science Part A: Polymer Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pol.20230160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science Part A: Polymer Chemistry","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pol.20230160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
Programmable polymer materials empowered by DNA nanotechnology
Over the past century, synthetic polymers have had a transformative impact on human life, replacing nature-derived materials in many areas. Yet, despite their many advantages, the structure and function of synthetic polymers still appear rudimentary compared to biological matter: cells use dynamic self-assembly to construct complex materials and operate sophisticated macromolecular devices. The field of DNA nanotechnology has demonstrated that synthetic DNA molecules can be programmed to undergo predictable self-assembly, offering unparalleled control over the formation and dynamic properties of artificial nanostructures. Intriguingly, the principles of DNA nanotechnology can be applied to the engineering of soft programmable materials, bringing the abilities of synthetic polymers closer to their biological counterparts. In this perspective, we discuss the unique features of DNA-functionalized polymer materials. We describe design principles that allow researchers to build complex supramolecular architectures with predictable and dynamically adjustable material properties. Finally, we highlight two key application areas where this biologically inspired material class offers particularly promising opportunities: (1) as dynamic matrices for 3D cell and organoid culture and (2) as smart materials for nucleic acid sequencing and pathogen detection.
期刊介绍:
Part A: Polymer Chemistry is devoted to studies in fundamental organic polymer chemistry and physical organic chemistry. This includes all related topics (such as organic, bioorganic, bioinorganic and biological chemistry of monomers, polymers, oligomers and model compounds, inorganic and organometallic chemistry for catalysts, mechanistic studies, supramolecular chemistry aspects relevant to polymer...