马尔可夫链收敛的改进界和条件

IF 0.8 3区 数学 Q2 MATHEMATICS
A. Veretennikov, M. Veretennikova
{"title":"马尔可夫链收敛的改进界和条件","authors":"A. Veretennikov, M. Veretennikova","doi":"10.1070/IM9076","DOIUrl":null,"url":null,"abstract":"We continue the work of improving the rate of convergence of ergodic homogeneous Markov chains. The setting is more general than in previous papers: we are able to get rid of the assumption about a common dominating measure and consider the case of inhomogeneous Markov chains as well as more general state spaces. We give examples where the new bound for the rate of convergence is the same as (resp. better than) the classical Markov–Dobrushin inequality.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":"86 1","pages":"92 - 125"},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On improved bounds and conditions for the convergence of Markov chains\",\"authors\":\"A. Veretennikov, M. Veretennikova\",\"doi\":\"10.1070/IM9076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We continue the work of improving the rate of convergence of ergodic homogeneous Markov chains. The setting is more general than in previous papers: we are able to get rid of the assumption about a common dominating measure and consider the case of inhomogeneous Markov chains as well as more general state spaces. We give examples where the new bound for the rate of convergence is the same as (resp. better than) the classical Markov–Dobrushin inequality.\",\"PeriodicalId\":54910,\"journal\":{\"name\":\"Izvestiya Mathematics\",\"volume\":\"86 1\",\"pages\":\"92 - 125\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/IM9076\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/IM9076","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们继续改进遍历齐次马尔可夫链的收敛速度的工作。与以前的论文相比,本文的设置更加一般:我们能够摆脱关于公共支配测度的假设,并考虑非齐次马尔可夫链的情况以及更一般的状态空间。我们给出了收敛速度的新界与(resp)相同的例子。优于经典的Markov-Dobrushin不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On improved bounds and conditions for the convergence of Markov chains
We continue the work of improving the rate of convergence of ergodic homogeneous Markov chains. The setting is more general than in previous papers: we are able to get rid of the assumption about a common dominating measure and consider the case of inhomogeneous Markov chains as well as more general state spaces. We give examples where the new bound for the rate of convergence is the same as (resp. better than) the classical Markov–Dobrushin inequality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya Mathematics
Izvestiya Mathematics 数学-数学
CiteScore
1.30
自引率
0.00%
发文量
30
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to: Algebra; Mathematical logic; Number theory; Mathematical analysis; Geometry; Topology; Differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信