具有后继整数的可定义性(约化)格

IF 0.8 3区 数学 Q2 MATHEMATICS
Alexei L. Semenov, S. Soprunov
{"title":"具有后继整数的可定义性(约化)格","authors":"Alexei L. Semenov, S. Soprunov","doi":"10.1070/IM9107","DOIUrl":null,"url":null,"abstract":"In this paper the lattice of definability for integers with a successor (the relation ) is described. The lattice, whose elements are also knows as reducts, consists of three (naturally described) infinite series of relations. The proof uses a version of the Svenonius theorem for structures of special form.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":"85 1","pages":"1257 - 1269"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lattice of definability (of reducts) for integers with successor\",\"authors\":\"Alexei L. Semenov, S. Soprunov\",\"doi\":\"10.1070/IM9107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the lattice of definability for integers with a successor (the relation ) is described. The lattice, whose elements are also knows as reducts, consists of three (naturally described) infinite series of relations. The proof uses a version of the Svenonius theorem for structures of special form.\",\"PeriodicalId\":54910,\"journal\":{\"name\":\"Izvestiya Mathematics\",\"volume\":\"85 1\",\"pages\":\"1257 - 1269\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/IM9107\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/IM9107","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了带后继整数(关系)的可定义格。格,其元素也被称为约化,由三个(自然描述的)无穷级数的关系组成。这个证明使用了Svenonius定理的一个版本来证明特殊形式的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lattice of definability (of reducts) for integers with successor
In this paper the lattice of definability for integers with a successor (the relation ) is described. The lattice, whose elements are also knows as reducts, consists of three (naturally described) infinite series of relations. The proof uses a version of the Svenonius theorem for structures of special form.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya Mathematics
Izvestiya Mathematics 数学-数学
CiteScore
1.30
自引率
0.00%
发文量
30
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to: Algebra; Mathematical logic; Number theory; Mathematical analysis; Geometry; Topology; Differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信