关于五维球面sasaki流形的分类

IF 0.8 3区 数学 Q2 MATHEMATICS
D. Sykes, G. Schmalz, V. Ezhov
{"title":"关于五维球面sasaki流形的分类","authors":"D. Sykes, G. Schmalz, V. Ezhov","doi":"10.1070/IM9046","DOIUrl":null,"url":null,"abstract":"In this article we regard spherical hypersurfaces in with a fixed Reeb vector field as -dimensional Sasakian manifolds. We establish a correspondence between three different sets of parameters, namely, those arising from representing the Reeb vector field as an automorphism of the Heisenberg sphere, those used in Stanton’s description of rigid spheres, and those arising from the rigid normal forms. We also describe geometrically the moduli space for rigid spheres and provide a geometric distinction between Stanton hypersurfaces and those found in [1]. Finally, we determine the Sasakian automorphism groups of rigid spheres and detect the homogeneous Sasakian manifolds among them.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":"85 1","pages":"518 - 528"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the classification of -dimensional spherical Sasakian manifolds\",\"authors\":\"D. Sykes, G. Schmalz, V. Ezhov\",\"doi\":\"10.1070/IM9046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we regard spherical hypersurfaces in with a fixed Reeb vector field as -dimensional Sasakian manifolds. We establish a correspondence between three different sets of parameters, namely, those arising from representing the Reeb vector field as an automorphism of the Heisenberg sphere, those used in Stanton’s description of rigid spheres, and those arising from the rigid normal forms. We also describe geometrically the moduli space for rigid spheres and provide a geometric distinction between Stanton hypersurfaces and those found in [1]. Finally, we determine the Sasakian automorphism groups of rigid spheres and detect the homogeneous Sasakian manifolds among them.\",\"PeriodicalId\":54910,\"journal\":{\"name\":\"Izvestiya Mathematics\",\"volume\":\"85 1\",\"pages\":\"518 - 528\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/IM9046\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/IM9046","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文将具有固定Reeb向量场的球面超曲面视为-维sasaki流形。我们建立了三种不同参数集之间的对应关系,即由表示Reeb向量场作为海森堡球的自同构产生的参数集,Stanton描述的刚性球中使用的参数集,以及由刚性正规形式产生的参数集。我们还从几何上描述了刚性球的模空间,并给出了Stanton超曲面与[1]中发现的超曲面的几何区别。最后,我们确定了刚性球的Sasakian自同构群,并检测了其中的齐次Sasakian流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the classification of -dimensional spherical Sasakian manifolds
In this article we regard spherical hypersurfaces in with a fixed Reeb vector field as -dimensional Sasakian manifolds. We establish a correspondence between three different sets of parameters, namely, those arising from representing the Reeb vector field as an automorphism of the Heisenberg sphere, those used in Stanton’s description of rigid spheres, and those arising from the rigid normal forms. We also describe geometrically the moduli space for rigid spheres and provide a geometric distinction between Stanton hypersurfaces and those found in [1]. Finally, we determine the Sasakian automorphism groups of rigid spheres and detect the homogeneous Sasakian manifolds among them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya Mathematics
Izvestiya Mathematics 数学-数学
CiteScore
1.30
自引率
0.00%
发文量
30
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to: Algebra; Mathematical logic; Number theory; Mathematical analysis; Geometry; Topology; Differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信