Klein-Gordon方程收敛到平稳非平衡态

IF 0.8 3区 数学 Q2 MATHEMATICS
T. V. Dudnikova
{"title":"Klein-Gordon方程收敛到平稳非平衡态","authors":"T. V. Dudnikova","doi":"10.1070/IM9044","DOIUrl":null,"url":null,"abstract":"We consider Klein–Gordon equations in , , with constant or variable coefficients and study the Cauchy problem with random initial data. We investigate the distribution of a random solution at moments of time . We prove the convergence of correlation functions of the measure to a limit as . The explicit formulae for the limiting correlation functions and the energy current density (in mean) are obtained in terms of the initial covariance. Furthermore, we prove the weak convergence of to a limiting measure as . We apply these results to the case when the initial random function has the Gibbs distribution with different temperatures in some infinite “parts” of the space. In this case, we find states in which the limiting energy current density does not vanish. Thus, for the model being studied, we construct a new class of stationary non-equilibrium states.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":"85 1","pages":"932 - 952"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Convergence to stationary non-equilibrium states for Klein–Gordon equations\",\"authors\":\"T. V. Dudnikova\",\"doi\":\"10.1070/IM9044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider Klein–Gordon equations in , , with constant or variable coefficients and study the Cauchy problem with random initial data. We investigate the distribution of a random solution at moments of time . We prove the convergence of correlation functions of the measure to a limit as . The explicit formulae for the limiting correlation functions and the energy current density (in mean) are obtained in terms of the initial covariance. Furthermore, we prove the weak convergence of to a limiting measure as . We apply these results to the case when the initial random function has the Gibbs distribution with different temperatures in some infinite “parts” of the space. In this case, we find states in which the limiting energy current density does not vanish. Thus, for the model being studied, we construct a new class of stationary non-equilibrium states.\",\"PeriodicalId\":54910,\"journal\":{\"name\":\"Izvestiya Mathematics\",\"volume\":\"85 1\",\"pages\":\"932 - 952\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/IM9044\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/IM9044","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

考虑常系数或变系数的,中的Klein-Gordon方程,研究了随机初始数据下的Cauchy问题。我们研究随机解在时刻的分布。证明了该测度的相关函数收敛到极限。用初始协方差得到了极限相关函数和能量电流密度(平均值)的显式表达式。进一步证明了对一个极限测度的弱收敛性。我们将这些结果应用于初始随机函数在空间的某些无限“部分”具有不同温度的吉布斯分布的情况。在这种情况下,我们找到了极限能量电流密度不消失的状态。因此,对于所研究的模型,我们构造了一类新的平稳非平衡状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence to stationary non-equilibrium states for Klein–Gordon equations
We consider Klein–Gordon equations in , , with constant or variable coefficients and study the Cauchy problem with random initial data. We investigate the distribution of a random solution at moments of time . We prove the convergence of correlation functions of the measure to a limit as . The explicit formulae for the limiting correlation functions and the energy current density (in mean) are obtained in terms of the initial covariance. Furthermore, we prove the weak convergence of to a limiting measure as . We apply these results to the case when the initial random function has the Gibbs distribution with different temperatures in some infinite “parts” of the space. In this case, we find states in which the limiting energy current density does not vanish. Thus, for the model being studied, we construct a new class of stationary non-equilibrium states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya Mathematics
Izvestiya Mathematics 数学-数学
CiteScore
1.30
自引率
0.00%
发文量
30
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to: Algebra; Mathematical logic; Number theory; Mathematical analysis; Geometry; Topology; Differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信