{"title":"线性椭圆不等式解的内估计","authors":"Vladimir Stepanovich Klimov","doi":"10.1070/IM8989","DOIUrl":null,"url":null,"abstract":"We study the wedge of solutions of the inequality , where is a linear elliptic operator of order acting on functions of variables. We establish interior estimates of the form for the elements of this wedge, where is a compact subdomain of , is the Sobolev space, , is the Lebesgue space of integrable functions, and the constant is independent of .","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":"11 1","pages":"92 - 110"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Interior estimates for solutions of linear elliptic inequalities\",\"authors\":\"Vladimir Stepanovich Klimov\",\"doi\":\"10.1070/IM8989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the wedge of solutions of the inequality , where is a linear elliptic operator of order acting on functions of variables. We establish interior estimates of the form for the elements of this wedge, where is a compact subdomain of , is the Sobolev space, , is the Lebesgue space of integrable functions, and the constant is independent of .\",\"PeriodicalId\":54910,\"journal\":{\"name\":\"Izvestiya Mathematics\",\"volume\":\"11 1\",\"pages\":\"92 - 110\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/IM8989\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/IM8989","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Interior estimates for solutions of linear elliptic inequalities
We study the wedge of solutions of the inequality , where is a linear elliptic operator of order acting on functions of variables. We establish interior estimates of the form for the elements of this wedge, where is a compact subdomain of , is the Sobolev space, , is the Lebesgue space of integrable functions, and the constant is independent of .
期刊介绍:
The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to:
Algebra;
Mathematical logic;
Number theory;
Mathematical analysis;
Geometry;
Topology;
Differential equations.