{"title":"一般的傅里叶系数和收敛性","authors":"L. Gogoladze, G. Cagareishvili","doi":"10.1070/IM8985","DOIUrl":null,"url":null,"abstract":"We find sufficient conditions which are in a sense best possible that must be satisfied by the functions of an orthonormal system in order for the Fourier coefficients of functions of bounded variation to satisfy the hypotheses of the Men’shov–Rademacher theorem. We also prove a theorem saying that every system contains a subsystem with respect to which the Fourier coefficients of functions of bounded variation satisfy those hypotheses. The results obtained complement and generalize the corresponding results in [1].","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":"85 1","pages":"228 - 240"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"General Fourier coefficients and convergence almost everywhere\",\"authors\":\"L. Gogoladze, G. Cagareishvili\",\"doi\":\"10.1070/IM8985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We find sufficient conditions which are in a sense best possible that must be satisfied by the functions of an orthonormal system in order for the Fourier coefficients of functions of bounded variation to satisfy the hypotheses of the Men’shov–Rademacher theorem. We also prove a theorem saying that every system contains a subsystem with respect to which the Fourier coefficients of functions of bounded variation satisfy those hypotheses. The results obtained complement and generalize the corresponding results in [1].\",\"PeriodicalId\":54910,\"journal\":{\"name\":\"Izvestiya Mathematics\",\"volume\":\"85 1\",\"pages\":\"228 - 240\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/IM8985\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/IM8985","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
General Fourier coefficients and convergence almost everywhere
We find sufficient conditions which are in a sense best possible that must be satisfied by the functions of an orthonormal system in order for the Fourier coefficients of functions of bounded variation to satisfy the hypotheses of the Men’shov–Rademacher theorem. We also prove a theorem saying that every system contains a subsystem with respect to which the Fourier coefficients of functions of bounded variation satisfy those hypotheses. The results obtained complement and generalize the corresponding results in [1].
期刊介绍:
The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to:
Algebra;
Mathematical logic;
Number theory;
Mathematical analysis;
Geometry;
Topology;
Differential equations.