具有不连续非线性的超线性椭圆问题的正解

IF 0.8 3区 数学 Q2 MATHEMATICS
V. Pavlenko, D. K. Potapov
{"title":"具有不连续非线性的超线性椭圆问题的正解","authors":"V. Pavlenko, D. K. Potapov","doi":"10.1070/IM9000","DOIUrl":null,"url":null,"abstract":"We consider an elliptic boundary-value problem with a homogeneous Dirichlet boundary condition, a parameter and a discontinuous non-linearity. The positive parameter appears as a multiplicative term in the non-linearity, and the problem has a zero solution for any value of the parameter. The non-linearity has superlinear growth at infinity. We prove the existence of positive solutions by a topological method.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":"85 1","pages":"262 - 278"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Positive solutions of superlinear elliptic problems with discontinuous non-linearities\",\"authors\":\"V. Pavlenko, D. K. Potapov\",\"doi\":\"10.1070/IM9000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider an elliptic boundary-value problem with a homogeneous Dirichlet boundary condition, a parameter and a discontinuous non-linearity. The positive parameter appears as a multiplicative term in the non-linearity, and the problem has a zero solution for any value of the parameter. The non-linearity has superlinear growth at infinity. We prove the existence of positive solutions by a topological method.\",\"PeriodicalId\":54910,\"journal\":{\"name\":\"Izvestiya Mathematics\",\"volume\":\"85 1\",\"pages\":\"262 - 278\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/IM9000\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/IM9000","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

考虑一类具有齐次Dirichlet边界条件、参数和不连续非线性的椭圆型边值问题。正参数在非线性中以乘法项的形式出现,对于参数的任何值,问题都有一个零解。非线性在无穷远处有超线性增长。用拓扑方法证明了正解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positive solutions of superlinear elliptic problems with discontinuous non-linearities
We consider an elliptic boundary-value problem with a homogeneous Dirichlet boundary condition, a parameter and a discontinuous non-linearity. The positive parameter appears as a multiplicative term in the non-linearity, and the problem has a zero solution for any value of the parameter. The non-linearity has superlinear growth at infinity. We prove the existence of positive solutions by a topological method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya Mathematics
Izvestiya Mathematics 数学-数学
CiteScore
1.30
自引率
0.00%
发文量
30
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to: Algebra; Mathematical logic; Number theory; Mathematical analysis; Geometry; Topology; Differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信