Sobolev型模型方程Cauchy问题中临界指数“瞬时爆破”与“局部溶解度”的关系

IF 0.8 3区 数学 Q2 MATHEMATICS
M. O. Korpusov, A. A. Panin, A. Shishkov
{"title":"Sobolev型模型方程Cauchy问题中临界指数“瞬时爆破”与“局部溶解度”的关系","authors":"M. O. Korpusov, A. A. Panin, A. Shishkov","doi":"10.1070/IM8949","DOIUrl":null,"url":null,"abstract":"We consider the Cauchy problem for a model partial differential equation of order three with a non-linearity of the form . We prove that when the Cauchy problem in has no local-in-time weak solution for a large class of initial functions, while when 3/2$?> there is a local weak solution.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":"85 1","pages":"111 - 144"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On the critical exponent “instantaneous blow-up” versus “local solubility” in the Cauchy problem for a model equation of Sobolev type\",\"authors\":\"M. O. Korpusov, A. A. Panin, A. Shishkov\",\"doi\":\"10.1070/IM8949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Cauchy problem for a model partial differential equation of order three with a non-linearity of the form . We prove that when the Cauchy problem in has no local-in-time weak solution for a large class of initial functions, while when 3/2$?> there is a local weak solution.\",\"PeriodicalId\":54910,\"journal\":{\"name\":\"Izvestiya Mathematics\",\"volume\":\"85 1\",\"pages\":\"111 - 144\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/IM8949\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/IM8949","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

考虑一类三阶偏微分方程的柯西问题,其非线性形式为:证明了柯西问题中对于一类大的初值函数没有局部时弱解,而当3/2$?b>存在一个局部弱解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the critical exponent “instantaneous blow-up” versus “local solubility” in the Cauchy problem for a model equation of Sobolev type
We consider the Cauchy problem for a model partial differential equation of order three with a non-linearity of the form . We prove that when the Cauchy problem in has no local-in-time weak solution for a large class of initial functions, while when 3/2$?> there is a local weak solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya Mathematics
Izvestiya Mathematics 数学-数学
CiteScore
1.30
自引率
0.00%
发文量
30
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to: Algebra; Mathematical logic; Number theory; Mathematical analysis; Geometry; Topology; Differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信