新的相空间公式和量子动力学方法

IF 16.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xin He, Baihua Wu, Youhao Shang, Bingqi Li, Xiangsong Cheng, Jian Liu
{"title":"新的相空间公式和量子动力学方法","authors":"Xin He,&nbsp;Baihua Wu,&nbsp;Youhao Shang,&nbsp;Bingqi Li,&nbsp;Xiangsong Cheng,&nbsp;Jian Liu","doi":"10.1002/wcms.1619","DOIUrl":null,"url":null,"abstract":"<p>We report recent progress on the phase space formulation of quantum mechanics with coordinate-momentum variables, focusing more on new theory of (weighted) constraint coordinate-momentum phase space for discrete-variable quantum systems. This leads to a general coordinate-momentum phase space formulation of composite quantum systems, where conventional representations on infinite phase space are employed for continuous variables. It is convenient to utilize (weighted) constraint coordinate-momentum phase space for representing the quantum state and describing nonclassical features. Various numerical tests demonstrate that new trajectory-based quantum dynamics approaches derived from the (weighted) constraint phase space representation are useful and practical for describing dynamical processes of composite quantum systems in the gas phase as well as in the condensed phase.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"12 6","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"New phase space formulations and quantum dynamics approaches\",\"authors\":\"Xin He,&nbsp;Baihua Wu,&nbsp;Youhao Shang,&nbsp;Bingqi Li,&nbsp;Xiangsong Cheng,&nbsp;Jian Liu\",\"doi\":\"10.1002/wcms.1619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We report recent progress on the phase space formulation of quantum mechanics with coordinate-momentum variables, focusing more on new theory of (weighted) constraint coordinate-momentum phase space for discrete-variable quantum systems. This leads to a general coordinate-momentum phase space formulation of composite quantum systems, where conventional representations on infinite phase space are employed for continuous variables. It is convenient to utilize (weighted) constraint coordinate-momentum phase space for representing the quantum state and describing nonclassical features. Various numerical tests demonstrate that new trajectory-based quantum dynamics approaches derived from the (weighted) constraint phase space representation are useful and practical for describing dynamical processes of composite quantum systems in the gas phase as well as in the condensed phase.</p><p>This article is categorized under:\\n </p>\",\"PeriodicalId\":236,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2022-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1619\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1619","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

摘要

本文报道了具有坐标动量变量的量子力学相空间公式的最新进展,重点介绍了离散变量量子系统的(加权)约束坐标动量相空间的新理论。这导致了复合量子系统的一般坐标-动量相空间公式,其中无限相空间上的传统表示用于连续变量。利用(加权)约束坐标动量相空间表示量子态和描述非经典特征是方便的。各种数值试验表明,基于(加权)约束相空间表示的新的基于轨迹的量子动力学方法对于描述复合量子系统在气相和凝聚态中的动力学过程是有用的和实用的。本文分类如下:
本文章由计算机程序翻译,如有差异,请以英文原文为准。

New phase space formulations and quantum dynamics approaches

New phase space formulations and quantum dynamics approaches

We report recent progress on the phase space formulation of quantum mechanics with coordinate-momentum variables, focusing more on new theory of (weighted) constraint coordinate-momentum phase space for discrete-variable quantum systems. This leads to a general coordinate-momentum phase space formulation of composite quantum systems, where conventional representations on infinite phase space are employed for continuous variables. It is convenient to utilize (weighted) constraint coordinate-momentum phase space for representing the quantum state and describing nonclassical features. Various numerical tests demonstrate that new trajectory-based quantum dynamics approaches derived from the (weighted) constraint phase space representation are useful and practical for describing dynamical processes of composite quantum systems in the gas phase as well as in the condensed phase.

This article is categorized under:

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wiley Interdisciplinary Reviews: Computational Molecular Science
Wiley Interdisciplinary Reviews: Computational Molecular Science CHEMISTRY, MULTIDISCIPLINARY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
28.90
自引率
1.80%
发文量
52
审稿时长
6-12 weeks
期刊介绍: Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信