作为预测模型的nomogram。

J. Eastham, M. Kattan, P. Scardino
{"title":"作为预测模型的nomogram。","authors":"J. Eastham, M. Kattan, P. Scardino","doi":"10.1053/SURO.2002.32936","DOIUrl":null,"url":null,"abstract":"Nomograms are valuable tools for estimating the likelihood of cancer being diagnosed, the pathologic features of a localized cancer, and the prognosis of a patient after treatment. Although the available nomograms are reasonably accurate, better predictive factors including additional clinical factors and new molecular analyses are needed to improve the accuracy or predictions. Nomogram performance will also be enhanced with larger datasets of patients and longer follow-up. We review the concepts of risk stratification and the development and use of nomograms as predictive tools.","PeriodicalId":79436,"journal":{"name":"Seminars in urologic oncology","volume":"20 2 1","pages":"108-15"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":"{\"title\":\"Nomograms as predictive models.\",\"authors\":\"J. Eastham, M. Kattan, P. Scardino\",\"doi\":\"10.1053/SURO.2002.32936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nomograms are valuable tools for estimating the likelihood of cancer being diagnosed, the pathologic features of a localized cancer, and the prognosis of a patient after treatment. Although the available nomograms are reasonably accurate, better predictive factors including additional clinical factors and new molecular analyses are needed to improve the accuracy or predictions. Nomogram performance will also be enhanced with larger datasets of patients and longer follow-up. We review the concepts of risk stratification and the development and use of nomograms as predictive tools.\",\"PeriodicalId\":79436,\"journal\":{\"name\":\"Seminars in urologic oncology\",\"volume\":\"20 2 1\",\"pages\":\"108-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"86\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in urologic oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1053/SURO.2002.32936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in urologic oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1053/SURO.2002.32936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86

摘要

nomographic是评估癌症被诊断的可能性、局部癌症的病理特征以及治疗后患者预后的有价值的工具。虽然现有的形态图相当准确,但需要更好的预测因素,包括额外的临床因素和新的分子分析来提高预测的准确性。更大的患者数据集和更长时间的随访也将增强Nomogram疗效。我们回顾了风险分层的概念以及作为预测工具的诺图图的发展和使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nomograms as predictive models.
Nomograms are valuable tools for estimating the likelihood of cancer being diagnosed, the pathologic features of a localized cancer, and the prognosis of a patient after treatment. Although the available nomograms are reasonably accurate, better predictive factors including additional clinical factors and new molecular analyses are needed to improve the accuracy or predictions. Nomogram performance will also be enhanced with larger datasets of patients and longer follow-up. We review the concepts of risk stratification and the development and use of nomograms as predictive tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信