水在机械约束下通过刺激反应的水凝胶

IF 0.5 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Complex Systems Pub Date : 2008-02-27 DOI:10.1063/1.2897837
G. Kondo, T. Oda, A. Suzuki
{"title":"水在机械约束下通过刺激反应的水凝胶","authors":"G. Kondo, T. Oda, A. Suzuki","doi":"10.1063/1.2897837","DOIUrl":null,"url":null,"abstract":"Friction between the polymer network and the solvent water was measured under the conditions that the thermoresponsive hydrogel was mechanically constrained in a glass microcapillary. The water‐flow through the hydrogel could be continuously controlled by more than 1×102 times only by adjusting the temperature in the vicinity of the transition temperature. The principles to control the solvent flow and the switching velocity by the temperature jump were discussed on the basis of the material parameters and the experimental conditions.","PeriodicalId":46935,"journal":{"name":"Complex Systems","volume":"47 1","pages":"458-463"},"PeriodicalIF":0.5000,"publicationDate":"2008-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.2897837","citationCount":"1","resultStr":"{\"title\":\"Water flow through a stimuli-responsive hydrogel under mechanical constraint\",\"authors\":\"G. Kondo, T. Oda, A. Suzuki\",\"doi\":\"10.1063/1.2897837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Friction between the polymer network and the solvent water was measured under the conditions that the thermoresponsive hydrogel was mechanically constrained in a glass microcapillary. The water‐flow through the hydrogel could be continuously controlled by more than 1×102 times only by adjusting the temperature in the vicinity of the transition temperature. The principles to control the solvent flow and the switching velocity by the temperature jump were discussed on the basis of the material parameters and the experimental conditions.\",\"PeriodicalId\":46935,\"journal\":{\"name\":\"Complex Systems\",\"volume\":\"47 1\",\"pages\":\"458-463\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2008-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1063/1.2897837\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.2897837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.2897837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

在玻璃微毛细管中机械约束热响应水凝胶的条件下,测量了聚合物网络与溶剂水之间的摩擦。仅通过在过渡温度附近调节温度,就可以连续控制水凝胶中的水流超过1×102次。根据材料参数和实验条件,讨论了用温度跳变控制溶剂流量和切换速度的原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Water flow through a stimuli-responsive hydrogel under mechanical constraint
Friction between the polymer network and the solvent water was measured under the conditions that the thermoresponsive hydrogel was mechanically constrained in a glass microcapillary. The water‐flow through the hydrogel could be continuously controlled by more than 1×102 times only by adjusting the temperature in the vicinity of the transition temperature. The principles to control the solvent flow and the switching velocity by the temperature jump were discussed on the basis of the material parameters and the experimental conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex Systems
Complex Systems MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
1.80
自引率
25.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信