{"title":"第四系高密度聚乙烯(HDPE)复合材料的耐候性:焊缝、配方和降解对拉伸性能的影响","authors":"David Viljoen, Johan Labuschagné, Ines Kuehnert","doi":"10.1002/pol.20230109","DOIUrl":null,"url":null,"abstract":"<p>In this work, the effects of weld lines, additives and the degree of QUV weathering on the tensile behavior of a range of high-density polyethylene composites with calcium carbonate, stabilizers and a carbon black/SEBS masterbatch are studied. The degree of weathering is characterized using FTIR-derived carbonyl, double-bond and carbonate indexes based on curve fitting, to allow for the fairer comparison of specimens with and without calcium carbonate. Weld-line specimens exhibited more rapid degradation than that seen in the reference specimens, while the exposed surfaces of the specimens degraded more quickly than the unexposed surfaces. ISO G154 Cycle 1 and Cycle 6 weathering protocols were compared. The additives were found to be effective at decreasing oxidative degradation, albeit with reduced effects at higher loadings and in mixed systems. These findings were mirrored in the mechanical properties of the specimens, with the modified specimens even exhibiting broadly improved properties with increasing aging. Elongation at break was most sensitive to weathering, with increasing degradation with increasing weathering across almost all specimens.</p>","PeriodicalId":199,"journal":{"name":"Journal of Polymer Science Part A: Polymer Chemistry","volume":"61 16","pages":"1912-1929"},"PeriodicalIF":2.7020,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pol.20230109","citationCount":"0","resultStr":"{\"title\":\"The weathering resistance of quaternary High-density polyethylene (HDPE) composites: Effects of weld lines, formulation and degradation on tensile properties\",\"authors\":\"David Viljoen, Johan Labuschagné, Ines Kuehnert\",\"doi\":\"10.1002/pol.20230109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, the effects of weld lines, additives and the degree of QUV weathering on the tensile behavior of a range of high-density polyethylene composites with calcium carbonate, stabilizers and a carbon black/SEBS masterbatch are studied. The degree of weathering is characterized using FTIR-derived carbonyl, double-bond and carbonate indexes based on curve fitting, to allow for the fairer comparison of specimens with and without calcium carbonate. Weld-line specimens exhibited more rapid degradation than that seen in the reference specimens, while the exposed surfaces of the specimens degraded more quickly than the unexposed surfaces. ISO G154 Cycle 1 and Cycle 6 weathering protocols were compared. The additives were found to be effective at decreasing oxidative degradation, albeit with reduced effects at higher loadings and in mixed systems. These findings were mirrored in the mechanical properties of the specimens, with the modified specimens even exhibiting broadly improved properties with increasing aging. Elongation at break was most sensitive to weathering, with increasing degradation with increasing weathering across almost all specimens.</p>\",\"PeriodicalId\":199,\"journal\":{\"name\":\"Journal of Polymer Science Part A: Polymer Chemistry\",\"volume\":\"61 16\",\"pages\":\"1912-1929\"},\"PeriodicalIF\":2.7020,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pol.20230109\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Science Part A: Polymer Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pol.20230109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science Part A: Polymer Chemistry","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pol.20230109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
The weathering resistance of quaternary High-density polyethylene (HDPE) composites: Effects of weld lines, formulation and degradation on tensile properties
In this work, the effects of weld lines, additives and the degree of QUV weathering on the tensile behavior of a range of high-density polyethylene composites with calcium carbonate, stabilizers and a carbon black/SEBS masterbatch are studied. The degree of weathering is characterized using FTIR-derived carbonyl, double-bond and carbonate indexes based on curve fitting, to allow for the fairer comparison of specimens with and without calcium carbonate. Weld-line specimens exhibited more rapid degradation than that seen in the reference specimens, while the exposed surfaces of the specimens degraded more quickly than the unexposed surfaces. ISO G154 Cycle 1 and Cycle 6 weathering protocols were compared. The additives were found to be effective at decreasing oxidative degradation, albeit with reduced effects at higher loadings and in mixed systems. These findings were mirrored in the mechanical properties of the specimens, with the modified specimens even exhibiting broadly improved properties with increasing aging. Elongation at break was most sensitive to weathering, with increasing degradation with increasing weathering across almost all specimens.
期刊介绍:
Part A: Polymer Chemistry is devoted to studies in fundamental organic polymer chemistry and physical organic chemistry. This includes all related topics (such as organic, bioorganic, bioinorganic and biological chemistry of monomers, polymers, oligomers and model compounds, inorganic and organometallic chemistry for catalysts, mechanistic studies, supramolecular chemistry aspects relevant to polymer...