{"title":"曲线下面积优化综合预测模型的元分析视角","authors":"Daisuke Yoneoka, Katsuhiro Omae, Masayuki Henmi, Shinto Eguchi","doi":"10.1002/jrsm.1612","DOIUrl":null,"url":null,"abstract":"<p>The number of clinical prediction models sharing the same prediction task has increased in the medical literature. However, evidence synthesis methodologies that use the results of these prediction models have not been sufficiently studied, particularly in the context of meta-analysis settings where only summary statistics are available. In particular, we consider the following situation: we want to predict an outcome <i>Y</i>, that is not included in our current data, while the covariate data are fully available. In addition, the summary statistics from prior studies, which share the same prediction task (i.e., the prediction of <i>Y</i>), are available. This study introduces a new method for synthesizing the summary results of binary prediction models reported in the prior studies using a linear predictor under a distributional assumption between the current and prior studies. The method provides an integrated predictor combining all predictors reported in the prior studies with weights. The vector of the weights is designed to achieve the hypothetical improvement of area under the receiver operating characteristic curve (AUC) on the current available data under a practical situation where there are different sets of covariates in the prior studies. We observe a counterintuitive aspect in typical situations where a part of weight components in the proposed method becomes negative. It implies that flipping the sign of the prediction results reported in each individual study would improve the overall prediction performance. Finally, numerical and real-world data analysis were conducted and showed that our method outperformed conventional methods in terms of AUC.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"14 2","pages":"234-246"},"PeriodicalIF":5.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Area under the curve-optimized synthesis of prediction models from a meta-analytical perspective\",\"authors\":\"Daisuke Yoneoka, Katsuhiro Omae, Masayuki Henmi, Shinto Eguchi\",\"doi\":\"10.1002/jrsm.1612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The number of clinical prediction models sharing the same prediction task has increased in the medical literature. However, evidence synthesis methodologies that use the results of these prediction models have not been sufficiently studied, particularly in the context of meta-analysis settings where only summary statistics are available. In particular, we consider the following situation: we want to predict an outcome <i>Y</i>, that is not included in our current data, while the covariate data are fully available. In addition, the summary statistics from prior studies, which share the same prediction task (i.e., the prediction of <i>Y</i>), are available. This study introduces a new method for synthesizing the summary results of binary prediction models reported in the prior studies using a linear predictor under a distributional assumption between the current and prior studies. The method provides an integrated predictor combining all predictors reported in the prior studies with weights. The vector of the weights is designed to achieve the hypothetical improvement of area under the receiver operating characteristic curve (AUC) on the current available data under a practical situation where there are different sets of covariates in the prior studies. We observe a counterintuitive aspect in typical situations where a part of weight components in the proposed method becomes negative. It implies that flipping the sign of the prediction results reported in each individual study would improve the overall prediction performance. Finally, numerical and real-world data analysis were conducted and showed that our method outperformed conventional methods in terms of AUC.</p>\",\"PeriodicalId\":226,\"journal\":{\"name\":\"Research Synthesis Methods\",\"volume\":\"14 2\",\"pages\":\"234-246\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Synthesis Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1612\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1612","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Area under the curve-optimized synthesis of prediction models from a meta-analytical perspective
The number of clinical prediction models sharing the same prediction task has increased in the medical literature. However, evidence synthesis methodologies that use the results of these prediction models have not been sufficiently studied, particularly in the context of meta-analysis settings where only summary statistics are available. In particular, we consider the following situation: we want to predict an outcome Y, that is not included in our current data, while the covariate data are fully available. In addition, the summary statistics from prior studies, which share the same prediction task (i.e., the prediction of Y), are available. This study introduces a new method for synthesizing the summary results of binary prediction models reported in the prior studies using a linear predictor under a distributional assumption between the current and prior studies. The method provides an integrated predictor combining all predictors reported in the prior studies with weights. The vector of the weights is designed to achieve the hypothetical improvement of area under the receiver operating characteristic curve (AUC) on the current available data under a practical situation where there are different sets of covariates in the prior studies. We observe a counterintuitive aspect in typical situations where a part of weight components in the proposed method becomes negative. It implies that flipping the sign of the prediction results reported in each individual study would improve the overall prediction performance. Finally, numerical and real-world data analysis were conducted and showed that our method outperformed conventional methods in terms of AUC.
期刊介绍:
Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines.
Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines.
By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.