{"title":"对比分析了模糊环境和直观模糊环境下的群体设备更换模型和个体设备更换模型,以获得优化结果","authors":"Vijaya Kumar Saranya, Shanmuga Sundari Murugan","doi":"10.1051/smdo/2023006","DOIUrl":null,"url":null,"abstract":"The main goal of this research is to compare group and individual replacement models based on fuzzy replacement theory and intuitionistic fuzzy replacement theory. The capital costs are assumed to be triangular fuzzy numbers, triangular intuitionistic fuzzy numbers, and trapezoidal intuitionistic fuzzy numbers, respectively. As a result, interpreting the direct relationship between volatility and ambiguity is critical. It is difficult to predict when specific equipment will unexpectedly fail. This problem can be solved by calculating the probability of failure distribution. Furthermore, the failure is assumed to occur only at the end of period t. In this situation, two types of replacement policies are used. The first is the Individual Replacement Policy, which states that if an item fails, it will be replaced immediately. The Group Replacement Policy states that all items must be replaced after a certain time period, with the option of replacing any item before the optimal time. The dimensions of the prosecution are fuzzy, and they are then assessed using mathematical and logical procedures. The fuzzy assessment criteria of the replacement model are provided as a set of outcomes, whereas the intuitionistic fuzzy replacement model has many advantages. A methodological technique is used to determine quality measurements in which fuzzy costs or values are kept without being merged into crisp values, allowing us to draw mathematical inferences in an uncertain setting. A comparison conceptualise is created for each fuzzy number, and in an uncertain environment, a comparison study on group and individual replacement was also conducted.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative analysis of the fuzzy and intuitionistic fuzzy environment for group and individual equipment replacement Models in order to achieve the optimized results\",\"authors\":\"Vijaya Kumar Saranya, Shanmuga Sundari Murugan\",\"doi\":\"10.1051/smdo/2023006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main goal of this research is to compare group and individual replacement models based on fuzzy replacement theory and intuitionistic fuzzy replacement theory. The capital costs are assumed to be triangular fuzzy numbers, triangular intuitionistic fuzzy numbers, and trapezoidal intuitionistic fuzzy numbers, respectively. As a result, interpreting the direct relationship between volatility and ambiguity is critical. It is difficult to predict when specific equipment will unexpectedly fail. This problem can be solved by calculating the probability of failure distribution. Furthermore, the failure is assumed to occur only at the end of period t. In this situation, two types of replacement policies are used. The first is the Individual Replacement Policy, which states that if an item fails, it will be replaced immediately. The Group Replacement Policy states that all items must be replaced after a certain time period, with the option of replacing any item before the optimal time. The dimensions of the prosecution are fuzzy, and they are then assessed using mathematical and logical procedures. The fuzzy assessment criteria of the replacement model are provided as a set of outcomes, whereas the intuitionistic fuzzy replacement model has many advantages. A methodological technique is used to determine quality measurements in which fuzzy costs or values are kept without being merged into crisp values, allowing us to draw mathematical inferences in an uncertain setting. A comparison conceptualise is created for each fuzzy number, and in an uncertain environment, a comparison study on group and individual replacement was also conducted.\",\"PeriodicalId\":37601,\"journal\":{\"name\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/smdo/2023006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2023006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
A comparative analysis of the fuzzy and intuitionistic fuzzy environment for group and individual equipment replacement Models in order to achieve the optimized results
The main goal of this research is to compare group and individual replacement models based on fuzzy replacement theory and intuitionistic fuzzy replacement theory. The capital costs are assumed to be triangular fuzzy numbers, triangular intuitionistic fuzzy numbers, and trapezoidal intuitionistic fuzzy numbers, respectively. As a result, interpreting the direct relationship between volatility and ambiguity is critical. It is difficult to predict when specific equipment will unexpectedly fail. This problem can be solved by calculating the probability of failure distribution. Furthermore, the failure is assumed to occur only at the end of period t. In this situation, two types of replacement policies are used. The first is the Individual Replacement Policy, which states that if an item fails, it will be replaced immediately. The Group Replacement Policy states that all items must be replaced after a certain time period, with the option of replacing any item before the optimal time. The dimensions of the prosecution are fuzzy, and they are then assessed using mathematical and logical procedures. The fuzzy assessment criteria of the replacement model are provided as a set of outcomes, whereas the intuitionistic fuzzy replacement model has many advantages. A methodological technique is used to determine quality measurements in which fuzzy costs or values are kept without being merged into crisp values, allowing us to draw mathematical inferences in an uncertain setting. A comparison conceptualise is created for each fuzzy number, and in an uncertain environment, a comparison study on group and individual replacement was also conducted.
期刊介绍:
The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).