在有适当通风系统的空调室内,人与人之间病毒传播的影响

Q3 Mathematics
Chalumuru Manas, Pusapati Laxmi Narasimha Raju, Kethavarapu Naga Bharat Kumar, H. Rajan
{"title":"在有适当通风系统的空调室内,人与人之间病毒传播的影响","authors":"Chalumuru Manas, Pusapati Laxmi Narasimha Raju, Kethavarapu Naga Bharat Kumar, H. Rajan","doi":"10.1051/smdo/2022013","DOIUrl":null,"url":null,"abstract":"As we are probably aware of certain infectious diseases that transmit from body to body because of perspiration or respiration of air from a human being containing strains of the infection, the goal of this investigation is to see how the infection is getting spread from a human residing in a closed area provided with air conditioner and with an appropriate ventilation framework that need to be involved to diminish infection dissemination in this enclosed area. Considering the present COVID-19 situation, it is important to discover the effect of infection spread to an individual contagion source. An appropriate CFD-model giving analysis of infection transmission from individual to individual in an air-conditioned room would give results to understand such situations. Likewise, this examination would help in determining the velocity, temperature, and particle contours in a characterized walled area. Besides, we have displayed various nooks utilizing different ventilation frameworks to discover which framework would give better outcomes to decrease infection transmission. Our investigation would provide how varying flow rates in a room at an outlet could be effective in reducing virus dissemination, as this model could be applied to cafes, cinemas, inns, and above all emergency clinics where individuals remain in an enclosed air-conditioned room.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of human–human virus transmission in an air-conditioned room with proper ventilation system\",\"authors\":\"Chalumuru Manas, Pusapati Laxmi Narasimha Raju, Kethavarapu Naga Bharat Kumar, H. Rajan\",\"doi\":\"10.1051/smdo/2022013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As we are probably aware of certain infectious diseases that transmit from body to body because of perspiration or respiration of air from a human being containing strains of the infection, the goal of this investigation is to see how the infection is getting spread from a human residing in a closed area provided with air conditioner and with an appropriate ventilation framework that need to be involved to diminish infection dissemination in this enclosed area. Considering the present COVID-19 situation, it is important to discover the effect of infection spread to an individual contagion source. An appropriate CFD-model giving analysis of infection transmission from individual to individual in an air-conditioned room would give results to understand such situations. Likewise, this examination would help in determining the velocity, temperature, and particle contours in a characterized walled area. Besides, we have displayed various nooks utilizing different ventilation frameworks to discover which framework would give better outcomes to decrease infection transmission. Our investigation would provide how varying flow rates in a room at an outlet could be effective in reducing virus dissemination, as this model could be applied to cafes, cinemas, inns, and above all emergency clinics where individuals remain in an enclosed air-conditioned room.\",\"PeriodicalId\":37601,\"journal\":{\"name\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/smdo/2022013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2022013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

由于我们可能已经意识到某些传染病是通过携带感染菌株的人的汗水或呼吸空气在人体之间传播的,因此本调查的目的是了解居住在有空调和适当通风框架的封闭区域的人是如何传播感染的,这些通风框架需要参与进来,以减少该封闭区域的感染传播。考虑到当前新冠疫情的情况,发现感染传播对单个传染源的影响是很重要的。一个适当的cfd模型分析了空调房间中个体之间的感染传播,可以得出理解这种情况的结果。同样,这种检查将有助于确定一个特征壁面区域的速度、温度和粒子轮廓。此外,我们展示了使用不同通风框架的各种角落,以发现哪种框架可以更好地减少感染传播。我们的调查将提供在出口房间内不同的流量如何有效减少病毒传播,因为该模型可以应用于咖啡馆、电影院、旅馆,尤其是个人留在封闭空调房间的急诊诊所。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of human–human virus transmission in an air-conditioned room with proper ventilation system
As we are probably aware of certain infectious diseases that transmit from body to body because of perspiration or respiration of air from a human being containing strains of the infection, the goal of this investigation is to see how the infection is getting spread from a human residing in a closed area provided with air conditioner and with an appropriate ventilation framework that need to be involved to diminish infection dissemination in this enclosed area. Considering the present COVID-19 situation, it is important to discover the effect of infection spread to an individual contagion source. An appropriate CFD-model giving analysis of infection transmission from individual to individual in an air-conditioned room would give results to understand such situations. Likewise, this examination would help in determining the velocity, temperature, and particle contours in a characterized walled area. Besides, we have displayed various nooks utilizing different ventilation frameworks to discover which framework would give better outcomes to decrease infection transmission. Our investigation would provide how varying flow rates in a room at an outlet could be effective in reducing virus dissemination, as this model could be applied to cafes, cinemas, inns, and above all emergency clinics where individuals remain in an enclosed air-conditioned room.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
19
审稿时长
16 weeks
期刊介绍: The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信