20马力三相异步电动机气流分析

Q3 Mathematics
Anuprita Bhosale, Sathyanarayanan Nandagopal, D. Jebaseelan, S. Ramasami, Lenin Natesan Chokkalingam
{"title":"20马力三相异步电动机气流分析","authors":"Anuprita Bhosale, Sathyanarayanan Nandagopal, D. Jebaseelan, S. Ramasami, Lenin Natesan Chokkalingam","doi":"10.1051/smdo/2022012","DOIUrl":null,"url":null,"abstract":"The present work deals with steady state air flow analysis of electric motor having 20 hp rating running at 1450 rpm. The motor is being used to run the belt pull system to drive the exhaust fan in the industry. Air flow analysis of electric motor is carried out to predict temperature distribution over the motor. The modeling of the complete motor is done in CATIA. Meshing of whole geometry is done in ICEM CFD14.5. Results are obtained using FLUENT. In this research only copper losses and iron losses are taken into consideration based on the output obtained from electrical simulation software. The copper and iron losses are found out from electromagnetic analysis using Motorsolve software. Losses are treated as heat source or input to find out temperature distribution. To improve the accuracy, the computational fluid dynamics (CFD) analysis is performed by considering the air flow around casing and fins and thermal generation due to the losses. It is observed that there is a significant rise in temperature on casing and on fins for 30 °C ambient temperature.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Air flow analysis of 20 hp three phase induction motor\",\"authors\":\"Anuprita Bhosale, Sathyanarayanan Nandagopal, D. Jebaseelan, S. Ramasami, Lenin Natesan Chokkalingam\",\"doi\":\"10.1051/smdo/2022012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work deals with steady state air flow analysis of electric motor having 20 hp rating running at 1450 rpm. The motor is being used to run the belt pull system to drive the exhaust fan in the industry. Air flow analysis of electric motor is carried out to predict temperature distribution over the motor. The modeling of the complete motor is done in CATIA. Meshing of whole geometry is done in ICEM CFD14.5. Results are obtained using FLUENT. In this research only copper losses and iron losses are taken into consideration based on the output obtained from electrical simulation software. The copper and iron losses are found out from electromagnetic analysis using Motorsolve software. Losses are treated as heat source or input to find out temperature distribution. To improve the accuracy, the computational fluid dynamics (CFD) analysis is performed by considering the air flow around casing and fins and thermal generation due to the losses. It is observed that there is a significant rise in temperature on casing and on fins for 30 °C ambient temperature.\",\"PeriodicalId\":37601,\"journal\":{\"name\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/smdo/2022012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2022012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究额定功率为20马力、转速为1450转的电动机的稳态气流分析。电机在工业上被用来运行皮带牵引系统来驱动排气扇。对电动机进行气流分析,预测电动机的温度分布。在CATIA中完成了整个电机的建模。整个几何体的网格划分在ICEM CFD14.5中完成。使用FLUENT计算结果。在本研究中,基于电仿真软件的输出,只考虑了铜损耗和铁损耗。利用Motorsolve软件进行电磁分析,计算出铜和铁的损耗。将损耗作为热源或输入来计算温度分布。为了提高精度,计算流体力学(CFD)分析考虑了机匣和翅片周围的气流以及损失产生的热量。可以观察到,在30℃的环境温度下,套管和翅片上的温度显著升高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Air flow analysis of 20 hp three phase induction motor
The present work deals with steady state air flow analysis of electric motor having 20 hp rating running at 1450 rpm. The motor is being used to run the belt pull system to drive the exhaust fan in the industry. Air flow analysis of electric motor is carried out to predict temperature distribution over the motor. The modeling of the complete motor is done in CATIA. Meshing of whole geometry is done in ICEM CFD14.5. Results are obtained using FLUENT. In this research only copper losses and iron losses are taken into consideration based on the output obtained from electrical simulation software. The copper and iron losses are found out from electromagnetic analysis using Motorsolve software. Losses are treated as heat source or input to find out temperature distribution. To improve the accuracy, the computational fluid dynamics (CFD) analysis is performed by considering the air flow around casing and fins and thermal generation due to the losses. It is observed that there is a significant rise in temperature on casing and on fins for 30 °C ambient temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
19
审稿时长
16 weeks
期刊介绍: The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信