K. Benfriha, Chawki El-Zant, Quentin Charrier, A. Bouzid, Peter Wardle, I. Belaidi, Stéphane Loubère, Nooshin Ghodsian, A. Aoussat
{"title":"开发先进的MES,用于模拟和优化工业4.0过程","authors":"K. Benfriha, Chawki El-Zant, Quentin Charrier, A. Bouzid, Peter Wardle, I. Belaidi, Stéphane Loubère, Nooshin Ghodsian, A. Aoussat","doi":"10.1051/smdo/2021022","DOIUrl":null,"url":null,"abstract":"The concept of Industry 4.0 has been developed a lot from a theoretical point of view. However, the real applications on production lines remain few in number, due to the difficulties of interoperability between the different production entities and also due to the lack of a control system adapted to the expected flexibility and to the management of the data generated. This article focuses on the development and deployment of a manufacturing execution system (MES) on a production system 4.0. The development stages of the system are explained in detail. The new functionalities and the expected level of performance impose a new logic in the design of advanced systems for controlling and optimizing production. Finally, a proof of concept of an MES was developed and tested on a new technology platform 4.0.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Development of an advanced MES for the simulation and optimization of industry 4.0 process\",\"authors\":\"K. Benfriha, Chawki El-Zant, Quentin Charrier, A. Bouzid, Peter Wardle, I. Belaidi, Stéphane Loubère, Nooshin Ghodsian, A. Aoussat\",\"doi\":\"10.1051/smdo/2021022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of Industry 4.0 has been developed a lot from a theoretical point of view. However, the real applications on production lines remain few in number, due to the difficulties of interoperability between the different production entities and also due to the lack of a control system adapted to the expected flexibility and to the management of the data generated. This article focuses on the development and deployment of a manufacturing execution system (MES) on a production system 4.0. The development stages of the system are explained in detail. The new functionalities and the expected level of performance impose a new logic in the design of advanced systems for controlling and optimizing production. Finally, a proof of concept of an MES was developed and tested on a new technology platform 4.0.\",\"PeriodicalId\":37601,\"journal\":{\"name\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/smdo/2021022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2021022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Development of an advanced MES for the simulation and optimization of industry 4.0 process
The concept of Industry 4.0 has been developed a lot from a theoretical point of view. However, the real applications on production lines remain few in number, due to the difficulties of interoperability between the different production entities and also due to the lack of a control system adapted to the expected flexibility and to the management of the data generated. This article focuses on the development and deployment of a manufacturing execution system (MES) on a production system 4.0. The development stages of the system are explained in detail. The new functionalities and the expected level of performance impose a new logic in the design of advanced systems for controlling and optimizing production. Finally, a proof of concept of an MES was developed and tested on a new technology platform 4.0.
期刊介绍:
The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).