一种新型的石墨烯压力传感器,其锯齿形压电阻具有最大的应变覆盖范围,以提高压力传感器的灵敏度

Q3 Mathematics
Meetu Nag, Ajay Kumar, B. Pratap
{"title":"一种新型的石墨烯压力传感器,其锯齿形压电阻具有最大的应变覆盖范围,以提高压力传感器的灵敏度","authors":"Meetu Nag, Ajay Kumar, B. Pratap","doi":"10.1051/smdo/2021013","DOIUrl":null,"url":null,"abstract":"The demand for flexible and wearable sensors is increasing day by day due to varied applications in the biomedical field. Especially highly sensitive sensors are required for the detection of the low signal from the body. It is important to develop a pressure sensor that can convert the maximum input signal into the electrical output. In this paper, the design and performance of graphene piezoresistive pressure sensors have been investigated by zig–zag piezoresistors on the square diaphragm. On the applied pressure, deformation is sensed by the piezoresistors above the diaphragm. Finite element analysis is carried out to investigate the effect of zig–zag piezoresistors on the square diaphragm. Simulated results for the optimized design are obtained for an operating range of 0–100 psi for pressure sensitivity.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A novel graphene pressure sensor with zig–zag shaped piezoresistors for maximum strain coverage for enhancing the sensitivity of the pressure sensor\",\"authors\":\"Meetu Nag, Ajay Kumar, B. Pratap\",\"doi\":\"10.1051/smdo/2021013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demand for flexible and wearable sensors is increasing day by day due to varied applications in the biomedical field. Especially highly sensitive sensors are required for the detection of the low signal from the body. It is important to develop a pressure sensor that can convert the maximum input signal into the electrical output. In this paper, the design and performance of graphene piezoresistive pressure sensors have been investigated by zig–zag piezoresistors on the square diaphragm. On the applied pressure, deformation is sensed by the piezoresistors above the diaphragm. Finite element analysis is carried out to investigate the effect of zig–zag piezoresistors on the square diaphragm. Simulated results for the optimized design are obtained for an operating range of 0–100 psi for pressure sensitivity.\",\"PeriodicalId\":37601,\"journal\":{\"name\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/smdo/2021013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2021013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

由于生物医学领域的各种应用,对柔性和可穿戴传感器的需求日益增加。尤其需要高灵敏度的传感器来检测来自身体的低信号。开发一种能够将最大输入信号转换为电输出的压力传感器是很重要的。本文研究了石墨烯压阻式压力传感器的设计和性能,采用方形膜片上的锯齿形压阻。在施加压力时,变形由膜片上方的压敏电阻感应。采用有限元方法研究了锯齿形压敏电阻对方形膜片的影响。在0-100 psi的压力灵敏度工作范围内,获得了优化设计的仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel graphene pressure sensor with zig–zag shaped piezoresistors for maximum strain coverage for enhancing the sensitivity of the pressure sensor
The demand for flexible and wearable sensors is increasing day by day due to varied applications in the biomedical field. Especially highly sensitive sensors are required for the detection of the low signal from the body. It is important to develop a pressure sensor that can convert the maximum input signal into the electrical output. In this paper, the design and performance of graphene piezoresistive pressure sensors have been investigated by zig–zag piezoresistors on the square diaphragm. On the applied pressure, deformation is sensed by the piezoresistors above the diaphragm. Finite element analysis is carried out to investigate the effect of zig–zag piezoresistors on the square diaphragm. Simulated results for the optimized design are obtained for an operating range of 0–100 psi for pressure sensitivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
19
审稿时长
16 weeks
期刊介绍: The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信