声学应用多层混合泡沫材料的设计与仿真

Q3 Mathematics
L. Yuvaraj, S. Jeyanthi, Lenin Babu Mailan Chinnapandi, E. Jayamani
{"title":"声学应用多层混合泡沫材料的设计与仿真","authors":"L. Yuvaraj, S. Jeyanthi, Lenin Babu Mailan Chinnapandi, E. Jayamani","doi":"10.1051/smdo/2021012","DOIUrl":null,"url":null,"abstract":"New acoustic multilayer absorber fabricated by coupling closed-cell metallic foam and open-cell polymeric foam, which aimed to develop a practical use of metallic foam in the noise control application. In prior, the individual sound absorption coefficient of both foam materials with different thicknesses measured by the impedance tube method as per ASTM E-1050. Using inverse characterization technique, the intrinsic properties needed for five parameter models in a numerical study are predicted. The measured characteristic impedance, complex wave propagation, and sound absorption coefficient of the individual foams are in close agreement with the prediction. Subsequently, a different configuration of multilayer absorber is modeled using obtained properties, and their acoustic performance is evaluated. The result indicates that the coupling of polymeric foam with metallic one exhibits enhanced sound absorption and usage of closed-cell metallic foam in noise control material. Furthermore, the result demonstrates that absorption capability entirely relies on the placement of polymeric foam in the configuration. The proposed hybrid multilayer absorber coupled with test bench car for interior acoustic study, where 5–30 dB is reduction is noticed in 1/3rd octave plot.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and simulation of multilayer hybrid foam material for acoustic application\",\"authors\":\"L. Yuvaraj, S. Jeyanthi, Lenin Babu Mailan Chinnapandi, E. Jayamani\",\"doi\":\"10.1051/smdo/2021012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New acoustic multilayer absorber fabricated by coupling closed-cell metallic foam and open-cell polymeric foam, which aimed to develop a practical use of metallic foam in the noise control application. In prior, the individual sound absorption coefficient of both foam materials with different thicknesses measured by the impedance tube method as per ASTM E-1050. Using inverse characterization technique, the intrinsic properties needed for five parameter models in a numerical study are predicted. The measured characteristic impedance, complex wave propagation, and sound absorption coefficient of the individual foams are in close agreement with the prediction. Subsequently, a different configuration of multilayer absorber is modeled using obtained properties, and their acoustic performance is evaluated. The result indicates that the coupling of polymeric foam with metallic one exhibits enhanced sound absorption and usage of closed-cell metallic foam in noise control material. Furthermore, the result demonstrates that absorption capability entirely relies on the placement of polymeric foam in the configuration. The proposed hybrid multilayer absorber coupled with test bench car for interior acoustic study, where 5–30 dB is reduction is noticed in 1/3rd octave plot.\",\"PeriodicalId\":37601,\"journal\":{\"name\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/smdo/2021012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2021012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

将闭孔金属泡沫与开孔聚合物泡沫耦合制成新型多层吸声材料,旨在开拓金属泡沫在噪声控制中的实际应用。在此之前,根据ASTM E-1050,用阻抗管法测量了两种不同厚度泡沫材料的单个吸声系数。利用逆表征技术,预测了数值研究中五参数模型的内在性质。实测的各泡沫的特性阻抗、复波传播和吸声系数与预测结果吻合较好。随后,利用所获得的特性对不同结构的多层吸波器进行了建模,并对其声学性能进行了评价。结果表明,聚合物泡沫与金属泡沫的耦合具有较强的吸声性能和闭孔金属泡沫在消声材料中的应用。此外,结果表明,吸收能力完全取决于聚合物泡沫在结构中的位置。本文提出的混合多层吸声器与试验台车耦合用于室内声学研究,在1/3倍频曲线上发现5-30 dB的衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and simulation of multilayer hybrid foam material for acoustic application
New acoustic multilayer absorber fabricated by coupling closed-cell metallic foam and open-cell polymeric foam, which aimed to develop a practical use of metallic foam in the noise control application. In prior, the individual sound absorption coefficient of both foam materials with different thicknesses measured by the impedance tube method as per ASTM E-1050. Using inverse characterization technique, the intrinsic properties needed for five parameter models in a numerical study are predicted. The measured characteristic impedance, complex wave propagation, and sound absorption coefficient of the individual foams are in close agreement with the prediction. Subsequently, a different configuration of multilayer absorber is modeled using obtained properties, and their acoustic performance is evaluated. The result indicates that the coupling of polymeric foam with metallic one exhibits enhanced sound absorption and usage of closed-cell metallic foam in noise control material. Furthermore, the result demonstrates that absorption capability entirely relies on the placement of polymeric foam in the configuration. The proposed hybrid multilayer absorber coupled with test bench car for interior acoustic study, where 5–30 dB is reduction is noticed in 1/3rd octave plot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
19
审稿时长
16 weeks
期刊介绍: The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信