涉及起重的人工装配操作的姿势预测和优化

Q3 Mathematics
Biswaranjan Rout, R. R. Dash, D. Dhupal
{"title":"涉及起重的人工装配操作的姿势预测和优化","authors":"Biswaranjan Rout, R. R. Dash, D. Dhupal","doi":"10.1051/smdo/2019020","DOIUrl":null,"url":null,"abstract":"The present work combines ergonomics with the posture prediction in the assembly process to avoid musculoskeletal issues of human operator. For improved productivity the operator should be in a better work environment and in sound health. The purpose of this paper is to provide a different perspective to avoid ergonomic risk factors in manual assembly. Here, a human is modeled as 20-DOF as modeled in robotic analysis and simulated in a virtual environment. In the present study, two objective cost functions i.e. joint discomfort function and energy expenditure function have been employed for evaluating the optimized posture. For posture prediction, a combined multi-objective optimization (MOO) method is used and the objective cost functions are minimized i.e. less joint discomfort and less energy in MOO method required to do the manual assembly operation and consequently, the results are compared and finally the movements are tested using REBA technique.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/smdo/2019020","citationCount":"5","resultStr":"{\"title\":\"Posture prediction and optimization for a manual assembly operation involving lifting of weights\",\"authors\":\"Biswaranjan Rout, R. R. Dash, D. Dhupal\",\"doi\":\"10.1051/smdo/2019020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work combines ergonomics with the posture prediction in the assembly process to avoid musculoskeletal issues of human operator. For improved productivity the operator should be in a better work environment and in sound health. The purpose of this paper is to provide a different perspective to avoid ergonomic risk factors in manual assembly. Here, a human is modeled as 20-DOF as modeled in robotic analysis and simulated in a virtual environment. In the present study, two objective cost functions i.e. joint discomfort function and energy expenditure function have been employed for evaluating the optimized posture. For posture prediction, a combined multi-objective optimization (MOO) method is used and the objective cost functions are minimized i.e. less joint discomfort and less energy in MOO method required to do the manual assembly operation and consequently, the results are compared and finally the movements are tested using REBA technique.\",\"PeriodicalId\":37601,\"journal\":{\"name\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1051/smdo/2019020\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/smdo/2019020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2019020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

本工作将人机工程学与装配过程中的姿态预测相结合,避免了操作人员的肌肉骨骼问题。为了提高生产效率,操作人员应该有更好的工作环境和良好的健康状况。本文的目的是提供一个不同的视角,以避免人工装配中的人体工程学风险因素。在这里,人类被建模为机器人分析中的20自由度模型,并在虚拟环境中进行模拟。本研究采用关节不适函数和能量消耗函数两个目标代价函数来评价优化后的姿态。对于姿态预测,采用组合多目标优化(MOO)方法,将目标代价函数最小化,即在进行人工装配操作时减少关节不适和能量消耗,并对结果进行比较,最后利用REBA技术对运动进行测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Posture prediction and optimization for a manual assembly operation involving lifting of weights
The present work combines ergonomics with the posture prediction in the assembly process to avoid musculoskeletal issues of human operator. For improved productivity the operator should be in a better work environment and in sound health. The purpose of this paper is to provide a different perspective to avoid ergonomic risk factors in manual assembly. Here, a human is modeled as 20-DOF as modeled in robotic analysis and simulated in a virtual environment. In the present study, two objective cost functions i.e. joint discomfort function and energy expenditure function have been employed for evaluating the optimized posture. For posture prediction, a combined multi-objective optimization (MOO) method is used and the objective cost functions are minimized i.e. less joint discomfort and less energy in MOO method required to do the manual assembly operation and consequently, the results are compared and finally the movements are tested using REBA technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
19
审稿时长
16 weeks
期刊介绍: The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信