碳材料:结构、性能、合成及应用

IF 1.9 Q3 ENGINEERING, MANUFACTURING
Jiang Li, Deqiang Yin, Y. Qin
{"title":"碳材料:结构、性能、合成及应用","authors":"Jiang Li, Deqiang Yin, Y. Qin","doi":"10.1051/mfreview/2023011","DOIUrl":null,"url":null,"abstract":"As one of the most versatile elements, carbon materials occupy the most plentiful allotropies composed of pure or mixed hybridization orbitals of sp1/sp2/sp3. The design and synthesis of new carbon materials may be stimulated based on a deeper understanding of underlying structures and related properties. In this review, the initial early discoveries of carbon materials are examined based on their hybridization of orbitals. According to the type of hybridization, the discovered carbon materials are firstly classified and introduced in detail based on their crystal structures. Secondly, its physical and chemical properties, mainly including mechanical properties, optical properties and electronic properties, are reviewed. Thirdly, the existing methods of predicting carbon structure and synthesizing carbon materials are classified and summarized, and some typical carbon materials predicted or prepared are discussed respectively. Then, the main applications of newly synthesized carbon materials in the last two decades are classified and summarized, and the microstructure is linked with the macro properties and specific applications. Finally, the future research opportunities for carbon materials and their potential applications are prospected from the aspects of the gap between theoretical prediction and preparation, the current research hotspot of carbon materials and the incomplete application of carbon materials. It is the authors' intention for this review paper to serve not only as a valuable reference for research into carbon materials and related composites, but also as a guidance for novel materials design at the atomic level.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"22 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Carbon materials: structures, properties, synthesis and applications\",\"authors\":\"Jiang Li, Deqiang Yin, Y. Qin\",\"doi\":\"10.1051/mfreview/2023011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As one of the most versatile elements, carbon materials occupy the most plentiful allotropies composed of pure or mixed hybridization orbitals of sp1/sp2/sp3. The design and synthesis of new carbon materials may be stimulated based on a deeper understanding of underlying structures and related properties. In this review, the initial early discoveries of carbon materials are examined based on their hybridization of orbitals. According to the type of hybridization, the discovered carbon materials are firstly classified and introduced in detail based on their crystal structures. Secondly, its physical and chemical properties, mainly including mechanical properties, optical properties and electronic properties, are reviewed. Thirdly, the existing methods of predicting carbon structure and synthesizing carbon materials are classified and summarized, and some typical carbon materials predicted or prepared are discussed respectively. Then, the main applications of newly synthesized carbon materials in the last two decades are classified and summarized, and the microstructure is linked with the macro properties and specific applications. Finally, the future research opportunities for carbon materials and their potential applications are prospected from the aspects of the gap between theoretical prediction and preparation, the current research hotspot of carbon materials and the incomplete application of carbon materials. It is the authors' intention for this review paper to serve not only as a valuable reference for research into carbon materials and related composites, but also as a guidance for novel materials design at the atomic level.\",\"PeriodicalId\":51873,\"journal\":{\"name\":\"Manufacturing Review\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/mfreview/2023011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2023011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1

摘要

作为用途最广泛的元素之一,碳材料占据了由sp1/sp2/sp3的纯或混合杂化轨道组成的最丰富的同素异形体。新的碳材料的设计和合成将基于对其结构和相关性质的更深入的了解。本文从轨道杂化的角度对早期发现的碳材料进行了评述。根据杂化类型,首先对发现的碳材料进行了分类,并根据其晶体结构进行了详细的介绍。其次,综述了其理化性能,主要包括机械性能、光学性能和电子性能。第三,对现有的碳结构预测方法和碳材料合成方法进行了分类和总结,并分别对预测或制备的一些典型碳材料进行了讨论。然后,对近二十年来新合成碳材料的主要应用进行了分类和总结,并将微观结构与宏观性能和具体应用联系起来。最后,从理论预测与制备之间的差距、目前碳材料的研究热点以及碳材料应用的不完善等方面,展望了碳材料未来的研究机会及其潜在应用。本文旨在为碳材料及相关复合材料的研究提供有价值的参考,同时也为原子水平上的新型材料设计提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carbon materials: structures, properties, synthesis and applications
As one of the most versatile elements, carbon materials occupy the most plentiful allotropies composed of pure or mixed hybridization orbitals of sp1/sp2/sp3. The design and synthesis of new carbon materials may be stimulated based on a deeper understanding of underlying structures and related properties. In this review, the initial early discoveries of carbon materials are examined based on their hybridization of orbitals. According to the type of hybridization, the discovered carbon materials are firstly classified and introduced in detail based on their crystal structures. Secondly, its physical and chemical properties, mainly including mechanical properties, optical properties and electronic properties, are reviewed. Thirdly, the existing methods of predicting carbon structure and synthesizing carbon materials are classified and summarized, and some typical carbon materials predicted or prepared are discussed respectively. Then, the main applications of newly synthesized carbon materials in the last two decades are classified and summarized, and the microstructure is linked with the macro properties and specific applications. Finally, the future research opportunities for carbon materials and their potential applications are prospected from the aspects of the gap between theoretical prediction and preparation, the current research hotspot of carbon materials and the incomplete application of carbon materials. It is the authors' intention for this review paper to serve not only as a valuable reference for research into carbon materials and related composites, but also as a guidance for novel materials design at the atomic level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Manufacturing Review
Manufacturing Review ENGINEERING, MANUFACTURING-
CiteScore
5.40
自引率
12.00%
发文量
20
审稿时长
8 weeks
期刊介绍: The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信