{"title":"应用OCMNO算法优化skd61涂层Ni-P材料超精密加工表面质量","authors":"L. A. Duc, P. Hiếu, Nguyen Minh Quang","doi":"10.1051/mfreview/2023006","DOIUrl":null,"url":null,"abstract":"In this paper, a new algorithm developing to solve optimization problems with many nonlinear factors in ultra-precision machining by magnetic liquid mixture. The presented algorithm is a collective global search inspired by artificial intelligence based on the coordination of nonlinear systems occurring in machining processes. Combining multiple nonlinear systems is established to coordinate various nonlinear objects based on simple physical techniques during machining. The ultimate aim is to create a robust optimization algorithm based on the optimization collaborative of multiple nonlinear systems (OCMNO) with the same flexibility and high convergence established in optimizing surface quality and material removal rate (MRR) when polishing the SKD61-coated Ni-P material. The benchmark functions analyzing and the established optimization polishing process SKD61-coated Ni-P material to show the effectiveness of the proposed OCMNO algorithm. Polishing experiments demonstrate the optimal technological parameters based on a new algorithm and rotary magnetic polishing method to give the best-machined surface quality. From the analysis and experiment results when polishing magnetic SKD 61 coated Ni-P materials in a rotating magnetic field when using a Magnetic Compound Fluid (MCF). The technological parameters according to the OCMNO algorithm for ultra-smooth surface quality with Ra = 1.137 nm without leaving any scratches on the after-polishing surface. The study aims to provide an excellent reference value in optimizing the surface polishing of difficult-to-machine materials, such as SKD 61 coated Ni-P material, materials in the mould industry, and magnetized materials.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of OCMNO algorithm applied to optimize surface quality when ultra-precise machining of SKD 61 coated Ni-P materials\",\"authors\":\"L. A. Duc, P. Hiếu, Nguyen Minh Quang\",\"doi\":\"10.1051/mfreview/2023006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new algorithm developing to solve optimization problems with many nonlinear factors in ultra-precision machining by magnetic liquid mixture. The presented algorithm is a collective global search inspired by artificial intelligence based on the coordination of nonlinear systems occurring in machining processes. Combining multiple nonlinear systems is established to coordinate various nonlinear objects based on simple physical techniques during machining. The ultimate aim is to create a robust optimization algorithm based on the optimization collaborative of multiple nonlinear systems (OCMNO) with the same flexibility and high convergence established in optimizing surface quality and material removal rate (MRR) when polishing the SKD61-coated Ni-P material. The benchmark functions analyzing and the established optimization polishing process SKD61-coated Ni-P material to show the effectiveness of the proposed OCMNO algorithm. Polishing experiments demonstrate the optimal technological parameters based on a new algorithm and rotary magnetic polishing method to give the best-machined surface quality. From the analysis and experiment results when polishing magnetic SKD 61 coated Ni-P materials in a rotating magnetic field when using a Magnetic Compound Fluid (MCF). The technological parameters according to the OCMNO algorithm for ultra-smooth surface quality with Ra = 1.137 nm without leaving any scratches on the after-polishing surface. The study aims to provide an excellent reference value in optimizing the surface polishing of difficult-to-machine materials, such as SKD 61 coated Ni-P material, materials in the mould industry, and magnetized materials.\",\"PeriodicalId\":51873,\"journal\":{\"name\":\"Manufacturing Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/mfreview/2023006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2023006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Development of OCMNO algorithm applied to optimize surface quality when ultra-precise machining of SKD 61 coated Ni-P materials
In this paper, a new algorithm developing to solve optimization problems with many nonlinear factors in ultra-precision machining by magnetic liquid mixture. The presented algorithm is a collective global search inspired by artificial intelligence based on the coordination of nonlinear systems occurring in machining processes. Combining multiple nonlinear systems is established to coordinate various nonlinear objects based on simple physical techniques during machining. The ultimate aim is to create a robust optimization algorithm based on the optimization collaborative of multiple nonlinear systems (OCMNO) with the same flexibility and high convergence established in optimizing surface quality and material removal rate (MRR) when polishing the SKD61-coated Ni-P material. The benchmark functions analyzing and the established optimization polishing process SKD61-coated Ni-P material to show the effectiveness of the proposed OCMNO algorithm. Polishing experiments demonstrate the optimal technological parameters based on a new algorithm and rotary magnetic polishing method to give the best-machined surface quality. From the analysis and experiment results when polishing magnetic SKD 61 coated Ni-P materials in a rotating magnetic field when using a Magnetic Compound Fluid (MCF). The technological parameters according to the OCMNO algorithm for ultra-smooth surface quality with Ra = 1.137 nm without leaving any scratches on the after-polishing surface. The study aims to provide an excellent reference value in optimizing the surface polishing of difficult-to-machine materials, such as SKD 61 coated Ni-P material, materials in the mould industry, and magnetized materials.
期刊介绍:
The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.