一种确定数控车床主轴轴承组件使用寿命和可靠性的实验方法

IF 1.9 Q3 ENGINEERING, MANUFACTURING
V. Pham, Tam Pham Minh, T. Nguyen
{"title":"一种确定数控车床主轴轴承组件使用寿命和可靠性的实验方法","authors":"V. Pham, Tam Pham Minh, T. Nguyen","doi":"10.1051/mfreview/2023005","DOIUrl":null,"url":null,"abstract":"The main spindle bearing assembly (MSBA) plays an important role in the quality and service life of CNC machine tools and industrial equipment. The MSBA is usually evaluated based on the allowable wear or the stiffness independently combined with the vibration characteristics. Therefore, it is very important to determine the service life of MSBA when the wear reaches the allowable value, and the stiffness is reduced to the allowable value. This paper studies the simultaneous relationship of wear, stiffness, and vibration characteristics of MSBA in a CNC lathe. The results show that the service life of MSBA is different when evaluated based on each criterion (wear or stiffness). The stiffness of the MSBA is reduced to the allowable limit [J] = 200 N/μm with a Root Mean Square (RMS) value of about 5.75 mm/s2. The wear of the MSBA reaches the allowable limit [δa] = 5 μm with an RMS value of about 4.5 mm/s2. The life of MSBA calculated according to the stiffness criterion is about 1.18 times higher than that calculated based on the wear criterion. The average life of MSBA with standard lubrication according to the wear criterion reaches ∼15,799 h and RMS reaches ∼2.4508 mm/s2.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An experimental method for determining the service life and reliability of the CNC lathe main spindle bearing assembly\",\"authors\":\"V. Pham, Tam Pham Minh, T. Nguyen\",\"doi\":\"10.1051/mfreview/2023005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main spindle bearing assembly (MSBA) plays an important role in the quality and service life of CNC machine tools and industrial equipment. The MSBA is usually evaluated based on the allowable wear or the stiffness independently combined with the vibration characteristics. Therefore, it is very important to determine the service life of MSBA when the wear reaches the allowable value, and the stiffness is reduced to the allowable value. This paper studies the simultaneous relationship of wear, stiffness, and vibration characteristics of MSBA in a CNC lathe. The results show that the service life of MSBA is different when evaluated based on each criterion (wear or stiffness). The stiffness of the MSBA is reduced to the allowable limit [J] = 200 N/μm with a Root Mean Square (RMS) value of about 5.75 mm/s2. The wear of the MSBA reaches the allowable limit [δa] = 5 μm with an RMS value of about 4.5 mm/s2. The life of MSBA calculated according to the stiffness criterion is about 1.18 times higher than that calculated based on the wear criterion. The average life of MSBA with standard lubrication according to the wear criterion reaches ∼15,799 h and RMS reaches ∼2.4508 mm/s2.\",\"PeriodicalId\":51873,\"journal\":{\"name\":\"Manufacturing Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/mfreview/2023005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2023005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

主轴轴承组件(MSBA)对数控机床和工业设备的质量和使用寿命起着重要作用。MSBA通常基于允许磨损或刚度独立结合振动特性进行评估。因此,当磨损达到允许值,刚度降至允许值时,确定MSBA的使用寿命是非常重要的。研究了数控车床MSBA的磨损、刚度和振动特性的同步关系。结果表明,基于不同的标准(磨损量或刚度)评估MSBA的使用寿命是不同的。MSBA的刚度降至允许极限[J] = 200 N/μm,均方根(RMS)约为5.75 mm/s2。MSBA的磨损量达到允许极限[δa] = 5 μm, RMS值约为4.5 mm/s2。根据刚度准则计算的MSBA寿命比根据磨损准则计算的MSBA寿命高约1.18倍。根据磨损标准进行标准润滑的MSBA平均寿命达到~ 15,799 h, RMS达到~ 2.4508 mm/s2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An experimental method for determining the service life and reliability of the CNC lathe main spindle bearing assembly
The main spindle bearing assembly (MSBA) plays an important role in the quality and service life of CNC machine tools and industrial equipment. The MSBA is usually evaluated based on the allowable wear or the stiffness independently combined with the vibration characteristics. Therefore, it is very important to determine the service life of MSBA when the wear reaches the allowable value, and the stiffness is reduced to the allowable value. This paper studies the simultaneous relationship of wear, stiffness, and vibration characteristics of MSBA in a CNC lathe. The results show that the service life of MSBA is different when evaluated based on each criterion (wear or stiffness). The stiffness of the MSBA is reduced to the allowable limit [J] = 200 N/μm with a Root Mean Square (RMS) value of about 5.75 mm/s2. The wear of the MSBA reaches the allowable limit [δa] = 5 μm with an RMS value of about 4.5 mm/s2. The life of MSBA calculated according to the stiffness criterion is about 1.18 times higher than that calculated based on the wear criterion. The average life of MSBA with standard lubrication according to the wear criterion reaches ∼15,799 h and RMS reaches ∼2.4508 mm/s2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Manufacturing Review
Manufacturing Review ENGINEERING, MANUFACTURING-
CiteScore
5.40
自引率
12.00%
发文量
20
审稿时长
8 weeks
期刊介绍: The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信