{"title":"一种确定数控车床主轴轴承组件使用寿命和可靠性的实验方法","authors":"V. Pham, Tam Pham Minh, T. Nguyen","doi":"10.1051/mfreview/2023005","DOIUrl":null,"url":null,"abstract":"The main spindle bearing assembly (MSBA) plays an important role in the quality and service life of CNC machine tools and industrial equipment. The MSBA is usually evaluated based on the allowable wear or the stiffness independently combined with the vibration characteristics. Therefore, it is very important to determine the service life of MSBA when the wear reaches the allowable value, and the stiffness is reduced to the allowable value. This paper studies the simultaneous relationship of wear, stiffness, and vibration characteristics of MSBA in a CNC lathe. The results show that the service life of MSBA is different when evaluated based on each criterion (wear or stiffness). The stiffness of the MSBA is reduced to the allowable limit [J] = 200 N/μm with a Root Mean Square (RMS) value of about 5.75 mm/s2. The wear of the MSBA reaches the allowable limit [δa] = 5 μm with an RMS value of about 4.5 mm/s2. The life of MSBA calculated according to the stiffness criterion is about 1.18 times higher than that calculated based on the wear criterion. The average life of MSBA with standard lubrication according to the wear criterion reaches ∼15,799 h and RMS reaches ∼2.4508 mm/s2.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An experimental method for determining the service life and reliability of the CNC lathe main spindle bearing assembly\",\"authors\":\"V. Pham, Tam Pham Minh, T. Nguyen\",\"doi\":\"10.1051/mfreview/2023005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main spindle bearing assembly (MSBA) plays an important role in the quality and service life of CNC machine tools and industrial equipment. The MSBA is usually evaluated based on the allowable wear or the stiffness independently combined with the vibration characteristics. Therefore, it is very important to determine the service life of MSBA when the wear reaches the allowable value, and the stiffness is reduced to the allowable value. This paper studies the simultaneous relationship of wear, stiffness, and vibration characteristics of MSBA in a CNC lathe. The results show that the service life of MSBA is different when evaluated based on each criterion (wear or stiffness). The stiffness of the MSBA is reduced to the allowable limit [J] = 200 N/μm with a Root Mean Square (RMS) value of about 5.75 mm/s2. The wear of the MSBA reaches the allowable limit [δa] = 5 μm with an RMS value of about 4.5 mm/s2. The life of MSBA calculated according to the stiffness criterion is about 1.18 times higher than that calculated based on the wear criterion. The average life of MSBA with standard lubrication according to the wear criterion reaches ∼15,799 h and RMS reaches ∼2.4508 mm/s2.\",\"PeriodicalId\":51873,\"journal\":{\"name\":\"Manufacturing Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/mfreview/2023005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2023005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
An experimental method for determining the service life and reliability of the CNC lathe main spindle bearing assembly
The main spindle bearing assembly (MSBA) plays an important role in the quality and service life of CNC machine tools and industrial equipment. The MSBA is usually evaluated based on the allowable wear or the stiffness independently combined with the vibration characteristics. Therefore, it is very important to determine the service life of MSBA when the wear reaches the allowable value, and the stiffness is reduced to the allowable value. This paper studies the simultaneous relationship of wear, stiffness, and vibration characteristics of MSBA in a CNC lathe. The results show that the service life of MSBA is different when evaluated based on each criterion (wear or stiffness). The stiffness of the MSBA is reduced to the allowable limit [J] = 200 N/μm with a Root Mean Square (RMS) value of about 5.75 mm/s2. The wear of the MSBA reaches the allowable limit [δa] = 5 μm with an RMS value of about 4.5 mm/s2. The life of MSBA calculated according to the stiffness criterion is about 1.18 times higher than that calculated based on the wear criterion. The average life of MSBA with standard lubrication according to the wear criterion reaches ∼15,799 h and RMS reaches ∼2.4508 mm/s2.
期刊介绍:
The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.