Kaijie Lu, C. Wang, Changrui Wang, Xueliang Fan, Fei Qi, Haidong He
{"title":"微通道散热器应用的拓扑结构综述","authors":"Kaijie Lu, C. Wang, Changrui Wang, Xueliang Fan, Fei Qi, Haidong He","doi":"10.1051/mfreview/2022035","DOIUrl":null,"url":null,"abstract":"The microchannel heat sink (MCHS) has the advantages of small heat transfer resistance, high heat transfer efficiency and small size, which exhibits good heat transfer performance in the field of active heat dissipation of electronic devices integrated with high heat flux density. In this paper, the application of MCHS in thermal management is reviewed in recent years, and the research progress of microchannel topology on enhancing heat transfer performance is summarized. Firstly, the research progress on the cross-sectional shape of the microchannel shows that the heat transfer area and fluid flow dead zone of the microchannel is the keys to affecting the heat transfer performance; Secondly, the microchannel distribution and the bionic microchannel structure have a great role in enhancing heat transfer performance, especially in microchannel temperature uniformity; Thirdly, the disturbing effect caused by interrupted structures in microchannels such as ribs and concave cavities has become a hot topic of research because it can weaken the thermal boundary layer and increase heat dissipation. Finally, the commonly used MCHS materials and cooling media are summarized and introduced. Based on the above reviews of MCHS research and applications, the future trends of MCHS topologies are presented.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Topological structures for microchannel heat sink applications – a review\",\"authors\":\"Kaijie Lu, C. Wang, Changrui Wang, Xueliang Fan, Fei Qi, Haidong He\",\"doi\":\"10.1051/mfreview/2022035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The microchannel heat sink (MCHS) has the advantages of small heat transfer resistance, high heat transfer efficiency and small size, which exhibits good heat transfer performance in the field of active heat dissipation of electronic devices integrated with high heat flux density. In this paper, the application of MCHS in thermal management is reviewed in recent years, and the research progress of microchannel topology on enhancing heat transfer performance is summarized. Firstly, the research progress on the cross-sectional shape of the microchannel shows that the heat transfer area and fluid flow dead zone of the microchannel is the keys to affecting the heat transfer performance; Secondly, the microchannel distribution and the bionic microchannel structure have a great role in enhancing heat transfer performance, especially in microchannel temperature uniformity; Thirdly, the disturbing effect caused by interrupted structures in microchannels such as ribs and concave cavities has become a hot topic of research because it can weaken the thermal boundary layer and increase heat dissipation. Finally, the commonly used MCHS materials and cooling media are summarized and introduced. Based on the above reviews of MCHS research and applications, the future trends of MCHS topologies are presented.\",\"PeriodicalId\":51873,\"journal\":{\"name\":\"Manufacturing Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/mfreview/2022035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2022035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Topological structures for microchannel heat sink applications – a review
The microchannel heat sink (MCHS) has the advantages of small heat transfer resistance, high heat transfer efficiency and small size, which exhibits good heat transfer performance in the field of active heat dissipation of electronic devices integrated with high heat flux density. In this paper, the application of MCHS in thermal management is reviewed in recent years, and the research progress of microchannel topology on enhancing heat transfer performance is summarized. Firstly, the research progress on the cross-sectional shape of the microchannel shows that the heat transfer area and fluid flow dead zone of the microchannel is the keys to affecting the heat transfer performance; Secondly, the microchannel distribution and the bionic microchannel structure have a great role in enhancing heat transfer performance, especially in microchannel temperature uniformity; Thirdly, the disturbing effect caused by interrupted structures in microchannels such as ribs and concave cavities has become a hot topic of research because it can weaken the thermal boundary layer and increase heat dissipation. Finally, the commonly used MCHS materials and cooling media are summarized and introduced. Based on the above reviews of MCHS research and applications, the future trends of MCHS topologies are presented.
期刊介绍:
The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.