Venkatesh B.N., Umamaheshwar Hebbal, Siddappa P.N., K. S., Nagaraja T.K.
{"title":"aa6061 - 6wt FSW参数优化% SiC复合板","authors":"Venkatesh B.N., Umamaheshwar Hebbal, Siddappa P.N., K. S., Nagaraja T.K.","doi":"10.1051/mfreview/2022032","DOIUrl":null,"url":null,"abstract":"AA6061-SiC composites are the most preferred materials for applications in the automobile and aerospace sector due to their superior properties. The FSW process is one of the novel solid states joining processes that overcome almost all the difficulties of the fusion welding process because the process that operates well below the melting point of the metals to be joined, consumes less energy, environment-friendly, and versatile, no shielding gas or filler metal is used. The welding parameters such as tool rotational speed, axial force, and tool pin profile play a major role in deciding the joint strength and hardness of the weld zone. Taguchi method was employed in this study to scrutinize the impact of welding processing factors, including rotational, speed, axial load, and pin profile on ultimate tensile strength, microhardness of weld zone. The results reveal that the welded joints produced at 750 rpm of tool rotational speed, the axial load of 6 kN using a square pin tool profile that exhibits higher UTS. The Vickers's hardness of AA6061-6 wt.% SiC composites was found to be superior at tool rotational speed of 900 rpm, the axial force of 6kN using cylindrical tool pin. The ANOVA Findings based on Vickers's hardness are tool profile: 53.84%, tool rotational speed: 20.16%, and axial force: 21.32%.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization of FSW parameters of AA6061-6 wt.% SiC composite plates\",\"authors\":\"Venkatesh B.N., Umamaheshwar Hebbal, Siddappa P.N., K. S., Nagaraja T.K.\",\"doi\":\"10.1051/mfreview/2022032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AA6061-SiC composites are the most preferred materials for applications in the automobile and aerospace sector due to their superior properties. The FSW process is one of the novel solid states joining processes that overcome almost all the difficulties of the fusion welding process because the process that operates well below the melting point of the metals to be joined, consumes less energy, environment-friendly, and versatile, no shielding gas or filler metal is used. The welding parameters such as tool rotational speed, axial force, and tool pin profile play a major role in deciding the joint strength and hardness of the weld zone. Taguchi method was employed in this study to scrutinize the impact of welding processing factors, including rotational, speed, axial load, and pin profile on ultimate tensile strength, microhardness of weld zone. The results reveal that the welded joints produced at 750 rpm of tool rotational speed, the axial load of 6 kN using a square pin tool profile that exhibits higher UTS. The Vickers's hardness of AA6061-6 wt.% SiC composites was found to be superior at tool rotational speed of 900 rpm, the axial force of 6kN using cylindrical tool pin. The ANOVA Findings based on Vickers's hardness are tool profile: 53.84%, tool rotational speed: 20.16%, and axial force: 21.32%.\",\"PeriodicalId\":51873,\"journal\":{\"name\":\"Manufacturing Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/mfreview/2022032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2022032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Optimization of FSW parameters of AA6061-6 wt.% SiC composite plates
AA6061-SiC composites are the most preferred materials for applications in the automobile and aerospace sector due to their superior properties. The FSW process is one of the novel solid states joining processes that overcome almost all the difficulties of the fusion welding process because the process that operates well below the melting point of the metals to be joined, consumes less energy, environment-friendly, and versatile, no shielding gas or filler metal is used. The welding parameters such as tool rotational speed, axial force, and tool pin profile play a major role in deciding the joint strength and hardness of the weld zone. Taguchi method was employed in this study to scrutinize the impact of welding processing factors, including rotational, speed, axial load, and pin profile on ultimate tensile strength, microhardness of weld zone. The results reveal that the welded joints produced at 750 rpm of tool rotational speed, the axial load of 6 kN using a square pin tool profile that exhibits higher UTS. The Vickers's hardness of AA6061-6 wt.% SiC composites was found to be superior at tool rotational speed of 900 rpm, the axial force of 6kN using cylindrical tool pin. The ANOVA Findings based on Vickers's hardness are tool profile: 53.84%, tool rotational speed: 20.16%, and axial force: 21.32%.
期刊介绍:
The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.