{"title":"利用定向能沉积技术回收金属间钛铝化物航空发动机部件","authors":"Balichakra Mallikarjuna, E. Reutzel","doi":"10.1051/mfreview/2022024","DOIUrl":null,"url":null,"abstract":"Titanium Aluminide (TiAl) alloys are intermetallics that offer low density, high melting point, good oxidation and corrosion resistance compared to Ni-based superalloys. As a result, these alloys are used in aero-engine parts such as turbine blades, fuel injectors, radial diffusers, divergent flaps, and more. During operation, aero-engine components are subjected to high thermal loading in an oxidizing and corrosive environment, which results in wear and other material damage. Replacement of the entire component may not be desirable due to long lead time and expense. In such cases, repair and refurbishing may be the best option for the reclamation of TiAl parts. Unfortunately, approved repair technology is not currently available for TiAl based components. Additive Manufacturing (AM) based Directed Energy Deposition (DED) may serve as an option to help repair and restore expensive aero-engine parts. In this work, a review of efforts to utilize the DED technique to repair damaged TiAl-based aerospace parts locally is conducted. Replacing the entire TiAl part is not advisable as it is expensive. DED is a promising technique used to produce, repair, rework, and overhaul (MRO) damaged parts. Considering the high-quality standard of the aircraft industry, DED repaired TiAl parts to be certified for their future use in the aircraft is very important. However, there are no standards for the certification of TiAl repaired parts is reported. Case studies reveal that DED is under consideration for repair of TiAl parts. Hybrid technology comprising machining, repair and finishing capability in a single machine is an attractive implementation strategy to improve repair efficacies. The review shows that the investigations into development and applications of DED-based repairing techniques are limited, which suggests that further investigations are very much needed.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reclamation of intermetallic titanium aluminide aero-engine components using directed energy deposition technology\",\"authors\":\"Balichakra Mallikarjuna, E. Reutzel\",\"doi\":\"10.1051/mfreview/2022024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Titanium Aluminide (TiAl) alloys are intermetallics that offer low density, high melting point, good oxidation and corrosion resistance compared to Ni-based superalloys. As a result, these alloys are used in aero-engine parts such as turbine blades, fuel injectors, radial diffusers, divergent flaps, and more. During operation, aero-engine components are subjected to high thermal loading in an oxidizing and corrosive environment, which results in wear and other material damage. Replacement of the entire component may not be desirable due to long lead time and expense. In such cases, repair and refurbishing may be the best option for the reclamation of TiAl parts. Unfortunately, approved repair technology is not currently available for TiAl based components. Additive Manufacturing (AM) based Directed Energy Deposition (DED) may serve as an option to help repair and restore expensive aero-engine parts. In this work, a review of efforts to utilize the DED technique to repair damaged TiAl-based aerospace parts locally is conducted. Replacing the entire TiAl part is not advisable as it is expensive. DED is a promising technique used to produce, repair, rework, and overhaul (MRO) damaged parts. Considering the high-quality standard of the aircraft industry, DED repaired TiAl parts to be certified for their future use in the aircraft is very important. However, there are no standards for the certification of TiAl repaired parts is reported. Case studies reveal that DED is under consideration for repair of TiAl parts. Hybrid technology comprising machining, repair and finishing capability in a single machine is an attractive implementation strategy to improve repair efficacies. The review shows that the investigations into development and applications of DED-based repairing techniques are limited, which suggests that further investigations are very much needed.\",\"PeriodicalId\":51873,\"journal\":{\"name\":\"Manufacturing Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/mfreview/2022024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2022024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Reclamation of intermetallic titanium aluminide aero-engine components using directed energy deposition technology
Titanium Aluminide (TiAl) alloys are intermetallics that offer low density, high melting point, good oxidation and corrosion resistance compared to Ni-based superalloys. As a result, these alloys are used in aero-engine parts such as turbine blades, fuel injectors, radial diffusers, divergent flaps, and more. During operation, aero-engine components are subjected to high thermal loading in an oxidizing and corrosive environment, which results in wear and other material damage. Replacement of the entire component may not be desirable due to long lead time and expense. In such cases, repair and refurbishing may be the best option for the reclamation of TiAl parts. Unfortunately, approved repair technology is not currently available for TiAl based components. Additive Manufacturing (AM) based Directed Energy Deposition (DED) may serve as an option to help repair and restore expensive aero-engine parts. In this work, a review of efforts to utilize the DED technique to repair damaged TiAl-based aerospace parts locally is conducted. Replacing the entire TiAl part is not advisable as it is expensive. DED is a promising technique used to produce, repair, rework, and overhaul (MRO) damaged parts. Considering the high-quality standard of the aircraft industry, DED repaired TiAl parts to be certified for their future use in the aircraft is very important. However, there are no standards for the certification of TiAl repaired parts is reported. Case studies reveal that DED is under consideration for repair of TiAl parts. Hybrid technology comprising machining, repair and finishing capability in a single machine is an attractive implementation strategy to improve repair efficacies. The review shows that the investigations into development and applications of DED-based repairing techniques are limited, which suggests that further investigations are very much needed.
期刊介绍:
The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.