镁及其合金的焊接:方法和工艺参数的概述及其对焊接的机械行为和结构完整性的影响

IF 1.9 Q3 ENGINEERING, MANUFACTURING
D. Klenam, Gabriel Seun Ogunwande, T. Omotosho, Blessing Ozah, N. Maledi, S. I. Hango, A. Fabuyide, Lesego Mohlala, J. W. van der Merwe, M. Bodunrin
{"title":"镁及其合金的焊接:方法和工艺参数的概述及其对焊接的机械行为和结构完整性的影响","authors":"D. Klenam, Gabriel Seun Ogunwande, T. Omotosho, Blessing Ozah, N. Maledi, S. I. Hango, A. Fabuyide, Lesego Mohlala, J. W. van der Merwe, M. Bodunrin","doi":"10.1051/mfreview/2021028","DOIUrl":null,"url":null,"abstract":"An overview of welding methods and process parameters and its effects on mechanical behaviour and structural integrity of magnesium and its alloys are discussed. These alloys are less dense and beneficial structural alloys for improved energy efficiency, eco-friendliness and driver of circular economic model for sustainable design and innovative ecosystem. While the application of Mg-alloys is projected to increase, understanding the mechanical behaviour and structural integrity of welded joints are critical. Thus, fusion and solid-state welding processes of these alloys are discussed with emphasis on mechanical characterization. Laser welding is the most effective fusion welding technique for most Mg alloys whereas, the predominant solid-state method is friction stir welding. The importance of process variables such as heat inputs, welding velocity (speed) and post weld treatments on the microstructural evolution, on mechanical and physical properties of the distinct zones of the weld joints are described. The weldment is the most susceptible to failure due to phase transformation, defects such as microporosity and relatively coarse grain sizes after solidification. The implication of the design of quality weld joints of Mg alloys are explored with areas for future research directions briefly discussed.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Welding of magnesium and its alloys: an overview of methods and process parameters and their effects on mechanical behaviour and structural integrity of the welds\",\"authors\":\"D. Klenam, Gabriel Seun Ogunwande, T. Omotosho, Blessing Ozah, N. Maledi, S. I. Hango, A. Fabuyide, Lesego Mohlala, J. W. van der Merwe, M. Bodunrin\",\"doi\":\"10.1051/mfreview/2021028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An overview of welding methods and process parameters and its effects on mechanical behaviour and structural integrity of magnesium and its alloys are discussed. These alloys are less dense and beneficial structural alloys for improved energy efficiency, eco-friendliness and driver of circular economic model for sustainable design and innovative ecosystem. While the application of Mg-alloys is projected to increase, understanding the mechanical behaviour and structural integrity of welded joints are critical. Thus, fusion and solid-state welding processes of these alloys are discussed with emphasis on mechanical characterization. Laser welding is the most effective fusion welding technique for most Mg alloys whereas, the predominant solid-state method is friction stir welding. The importance of process variables such as heat inputs, welding velocity (speed) and post weld treatments on the microstructural evolution, on mechanical and physical properties of the distinct zones of the weld joints are described. The weldment is the most susceptible to failure due to phase transformation, defects such as microporosity and relatively coarse grain sizes after solidification. The implication of the design of quality weld joints of Mg alloys are explored with areas for future research directions briefly discussed.\",\"PeriodicalId\":51873,\"journal\":{\"name\":\"Manufacturing Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/mfreview/2021028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2021028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1

摘要

综述了焊接方法、工艺参数及其对镁及其合金力学性能和结构完整性的影响。这些合金是低密度和有益的结构合金,可提高能源效率,生态友好和驱动可持续设计和创新生态系统的循环经济模式。虽然镁合金的应用预计会增加,但了解焊接接头的力学行为和结构完整性至关重要。因此,讨论了这些合金的熔合和固态焊接工艺,重点是力学特性。激光焊接是大多数镁合金最有效的熔焊技术,而主要的固态方法是搅拌摩擦焊。描述了热输入、焊接速度(速度)和焊后处理等工艺变量对焊接接头不同区域的显微组织演变、机械和物理性能的重要性。焊件在凝固后最容易因相变、微孔隙等缺陷和相对粗大的晶粒尺寸而失效。探讨了镁合金焊接接头质量设计的意义,并对今后的研究方向作了简要的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Welding of magnesium and its alloys: an overview of methods and process parameters and their effects on mechanical behaviour and structural integrity of the welds
An overview of welding methods and process parameters and its effects on mechanical behaviour and structural integrity of magnesium and its alloys are discussed. These alloys are less dense and beneficial structural alloys for improved energy efficiency, eco-friendliness and driver of circular economic model for sustainable design and innovative ecosystem. While the application of Mg-alloys is projected to increase, understanding the mechanical behaviour and structural integrity of welded joints are critical. Thus, fusion and solid-state welding processes of these alloys are discussed with emphasis on mechanical characterization. Laser welding is the most effective fusion welding technique for most Mg alloys whereas, the predominant solid-state method is friction stir welding. The importance of process variables such as heat inputs, welding velocity (speed) and post weld treatments on the microstructural evolution, on mechanical and physical properties of the distinct zones of the weld joints are described. The weldment is the most susceptible to failure due to phase transformation, defects such as microporosity and relatively coarse grain sizes after solidification. The implication of the design of quality weld joints of Mg alloys are explored with areas for future research directions briefly discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Manufacturing Review
Manufacturing Review ENGINEERING, MANUFACTURING-
CiteScore
5.40
自引率
12.00%
发文量
20
审稿时长
8 weeks
期刊介绍: The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信