微铣削过程建模:综述

IF 1.9 Q3 ENGINEERING, MANUFACTURING
A. Mamedov
{"title":"微铣削过程建模:综述","authors":"A. Mamedov","doi":"10.1051/MFREVIEW/2021003","DOIUrl":null,"url":null,"abstract":"The trend towards miniature manufacturing in high technological fields like bioengineering, electronics and aerospace has increased dramatically over the last decade. Many methods of micro manufacturing have been researched and applied to manufacture small scale components. Among these manufacturing methods micro-mechanical machining methods have shown themselves to be attractive alternatives. Micro milling is one of the most frequently used micro-mechanical machining method with high potential for the precise manufacturing of complex parts. The aim of this work is to present the principal aspects related to micro milling technology, with emphasis on process modeling and quality of the finished product. A general view on process modeling starting from chip thickness models up to tool and workpiece machining induced distortion models is depicted. Specifically, different modeling techniques related to modeling of micro milling process are evaluated and important aspects that authors revealed during their research are presented. Finally, implications are discussed and suggestions for future research are presented.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Micro milling process modeling: a review\",\"authors\":\"A. Mamedov\",\"doi\":\"10.1051/MFREVIEW/2021003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The trend towards miniature manufacturing in high technological fields like bioengineering, electronics and aerospace has increased dramatically over the last decade. Many methods of micro manufacturing have been researched and applied to manufacture small scale components. Among these manufacturing methods micro-mechanical machining methods have shown themselves to be attractive alternatives. Micro milling is one of the most frequently used micro-mechanical machining method with high potential for the precise manufacturing of complex parts. The aim of this work is to present the principal aspects related to micro milling technology, with emphasis on process modeling and quality of the finished product. A general view on process modeling starting from chip thickness models up to tool and workpiece machining induced distortion models is depicted. Specifically, different modeling techniques related to modeling of micro milling process are evaluated and important aspects that authors revealed during their research are presented. Finally, implications are discussed and suggestions for future research are presented.\",\"PeriodicalId\":51873,\"journal\":{\"name\":\"Manufacturing Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/MFREVIEW/2021003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/MFREVIEW/2021003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 9

摘要

在过去十年中,生物工程、电子和航空航天等高科技领域的微型制造趋势急剧增加。许多微制造方法已被研究并应用于小尺寸零件的制造。在这些制造方法中,微机械加工方法已显示出自己是有吸引力的替代方法。微铣削是最常用的微机械加工方法之一,在复杂零件的精密制造方面具有很大的潜力。这项工作的目的是介绍与微铣削技术有关的主要方面,重点是过程建模和成品质量。描述了从切屑厚度模型到刀具和工件加工诱发畸变模型的过程建模的一般观点。具体来说,与微铣削过程建模相关的不同建模技术进行了评估,并介绍了作者在研究过程中揭示的重要方面。最后,对本文的研究意义进行了讨论,并对未来的研究提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Micro milling process modeling: a review
The trend towards miniature manufacturing in high technological fields like bioengineering, electronics and aerospace has increased dramatically over the last decade. Many methods of micro manufacturing have been researched and applied to manufacture small scale components. Among these manufacturing methods micro-mechanical machining methods have shown themselves to be attractive alternatives. Micro milling is one of the most frequently used micro-mechanical machining method with high potential for the precise manufacturing of complex parts. The aim of this work is to present the principal aspects related to micro milling technology, with emphasis on process modeling and quality of the finished product. A general view on process modeling starting from chip thickness models up to tool and workpiece machining induced distortion models is depicted. Specifically, different modeling techniques related to modeling of micro milling process are evaluated and important aspects that authors revealed during their research are presented. Finally, implications are discussed and suggestions for future research are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Manufacturing Review
Manufacturing Review ENGINEERING, MANUFACTURING-
CiteScore
5.40
自引率
12.00%
发文量
20
审稿时长
8 weeks
期刊介绍: The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信