Karthik S.R., Neelakanta V. Londe, R. Shetty, R. Nayak, Adithya Hedge
{"title":"时效硬化stellit6合金硬度、磨损和表面粗糙度的优化与预测","authors":"Karthik S.R., Neelakanta V. Londe, R. Shetty, R. Nayak, Adithya Hedge","doi":"10.1051/mfreview/2022008","DOIUrl":null,"url":null,"abstract":"Growing demand for Stellite 6 alloys due to its attractive properties such as superior strength, toughness, wear resistance, fracture resistant characteristics, and their exceptional resistance to corrosion has made them applicable in industrial as well as commercial applications, such as aerospace industries, nuclear waste storage, automobile industries and surgical implantation. However, in spite of these applications, automotive part manufacturers mainly (Bearing Materials) are looking for a comprehensive study, such as mechanics of friction and the relationship between friction and wear. Hence in this paper, an attempt has been made to study the tribological behavior such as wear characterization and surface roughness of age hardened Stellite 6 alloys. The main objective of the research is to determine the favorable tribological conditions for improving wear resistant properties and surface roughness on age hardened Stellite 6 alloys. Hence two body wear study and surface roughness study during Wire Electric Discharge Machining (WEDM) of age hardened Stellite 6 alloys based on Analysis of Variance (ANOVA), Taguchi's Design of Experiment (TDOE), Response Surface Methodology(RSM) and Desirability Functional Analysis (DFA) have been used to achieve this goal. From the study it is observed that optimum values for improving hardness, wear and surface roughness values can be easily achieved with less time and cost by adopting the said techniques. •From microstructural observation, as the peak current increases there is larger amount of dendritic carbides and cracking of carbides due to high plastic deformation resulting in thermal softening of Stellite 6 alloy during wire electric discharge machining resulting in better surface roughness values. The second-order model for hardness, wear and surface roughness using response surface methodology can be adopted for predicting for hardness, wear and surface roughness in any experimental domain.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Optimization and prediction of hardness, wear and surface roughness on age hardened stellite 6 alloys\",\"authors\":\"Karthik S.R., Neelakanta V. Londe, R. Shetty, R. Nayak, Adithya Hedge\",\"doi\":\"10.1051/mfreview/2022008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Growing demand for Stellite 6 alloys due to its attractive properties such as superior strength, toughness, wear resistance, fracture resistant characteristics, and their exceptional resistance to corrosion has made them applicable in industrial as well as commercial applications, such as aerospace industries, nuclear waste storage, automobile industries and surgical implantation. However, in spite of these applications, automotive part manufacturers mainly (Bearing Materials) are looking for a comprehensive study, such as mechanics of friction and the relationship between friction and wear. Hence in this paper, an attempt has been made to study the tribological behavior such as wear characterization and surface roughness of age hardened Stellite 6 alloys. The main objective of the research is to determine the favorable tribological conditions for improving wear resistant properties and surface roughness on age hardened Stellite 6 alloys. Hence two body wear study and surface roughness study during Wire Electric Discharge Machining (WEDM) of age hardened Stellite 6 alloys based on Analysis of Variance (ANOVA), Taguchi's Design of Experiment (TDOE), Response Surface Methodology(RSM) and Desirability Functional Analysis (DFA) have been used to achieve this goal. From the study it is observed that optimum values for improving hardness, wear and surface roughness values can be easily achieved with less time and cost by adopting the said techniques. •From microstructural observation, as the peak current increases there is larger amount of dendritic carbides and cracking of carbides due to high plastic deformation resulting in thermal softening of Stellite 6 alloy during wire electric discharge machining resulting in better surface roughness values. The second-order model for hardness, wear and surface roughness using response surface methodology can be adopted for predicting for hardness, wear and surface roughness in any experimental domain.\",\"PeriodicalId\":51873,\"journal\":{\"name\":\"Manufacturing Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/mfreview/2022008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2022008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Optimization and prediction of hardness, wear and surface roughness on age hardened stellite 6 alloys
Growing demand for Stellite 6 alloys due to its attractive properties such as superior strength, toughness, wear resistance, fracture resistant characteristics, and their exceptional resistance to corrosion has made them applicable in industrial as well as commercial applications, such as aerospace industries, nuclear waste storage, automobile industries and surgical implantation. However, in spite of these applications, automotive part manufacturers mainly (Bearing Materials) are looking for a comprehensive study, such as mechanics of friction and the relationship between friction and wear. Hence in this paper, an attempt has been made to study the tribological behavior such as wear characterization and surface roughness of age hardened Stellite 6 alloys. The main objective of the research is to determine the favorable tribological conditions for improving wear resistant properties and surface roughness on age hardened Stellite 6 alloys. Hence two body wear study and surface roughness study during Wire Electric Discharge Machining (WEDM) of age hardened Stellite 6 alloys based on Analysis of Variance (ANOVA), Taguchi's Design of Experiment (TDOE), Response Surface Methodology(RSM) and Desirability Functional Analysis (DFA) have been used to achieve this goal. From the study it is observed that optimum values for improving hardness, wear and surface roughness values can be easily achieved with less time and cost by adopting the said techniques. •From microstructural observation, as the peak current increases there is larger amount of dendritic carbides and cracking of carbides due to high plastic deformation resulting in thermal softening of Stellite 6 alloy during wire electric discharge machining resulting in better surface roughness values. The second-order model for hardness, wear and surface roughness using response surface methodology can be adopted for predicting for hardness, wear and surface roughness in any experimental domain.
期刊介绍:
The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.