Al-22%SiC金属基复合材料电火花加工的分析、预测建模和多响应优化,以实现表面粗糙度和孔过切的最小化

IF 1.9 Q3 ENGINEERING, MANUFACTURING
Subhashree Naik, Sudhansu Ranjan Das, D. Dhupal
{"title":"Al-22%SiC金属基复合材料电火花加工的分析、预测建模和多响应优化,以实现表面粗糙度和孔过切的最小化","authors":"Subhashree Naik, Sudhansu Ranjan Das, D. Dhupal","doi":"10.1051/mfreview/2020018","DOIUrl":null,"url":null,"abstract":"Due to the widespread engineering applications of metal matrix composites especially in automotive, aerospace, military, and electricity industries; the achievement of desired shape and contour of the machined end product with intricate geometry and dimensions that are very challenging task. This experimental investigation deals with electrical discharge machining of newly engineered metal matrix composite of aluminum reinforced with 22 wt.% of silicon carbide particles (Al-22%SiC MMC) using a brass electrode to analyze the machined part quality concerning surface roughness and overcut. Forty-six sets of experimental trials are conducted by considering five machining parameters (discharge current, gap voltage, pulse-on-time, pulse-off-time and flushing pressure) based on Box-Behnken's design of experiments (BBDOEs). This article demonstrates the methodology for predictive modeling and multi-response optimization of machining accuracy and surface quality to enhance the hole quality in Al-SiC based MMC, employing response surface methodology (RSM) and desirability function approach (DFA). Finally, a novel approach has been proposed for economic analysis which estimated the total machining cost per part of rupees 211.08 during EDM of Al-SiC MMC under optimum machining conditions. Thereafter, under the influence of discharge current several observations are performed on machined surface morphology and hole characteristics by scanning electron microscope to establish the process. The result shows that discharge current has the significant contribution (38.16% for Ra, 37.12% in case of OC) in degradation of surface finish as well as the dimensional deviation of hole diameter, especially overcut. The machining data generated for the Al-SiC MMC will be useful for the industry.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/mfreview/2020018","citationCount":"12","resultStr":"{\"title\":\"Analysis, predictive modelling and multi-response optimization in electrical discharge machining of Al-22%SiC metal matrix composite for minimization of surface roughness and hole overcut\",\"authors\":\"Subhashree Naik, Sudhansu Ranjan Das, D. Dhupal\",\"doi\":\"10.1051/mfreview/2020018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the widespread engineering applications of metal matrix composites especially in automotive, aerospace, military, and electricity industries; the achievement of desired shape and contour of the machined end product with intricate geometry and dimensions that are very challenging task. This experimental investigation deals with electrical discharge machining of newly engineered metal matrix composite of aluminum reinforced with 22 wt.% of silicon carbide particles (Al-22%SiC MMC) using a brass electrode to analyze the machined part quality concerning surface roughness and overcut. Forty-six sets of experimental trials are conducted by considering five machining parameters (discharge current, gap voltage, pulse-on-time, pulse-off-time and flushing pressure) based on Box-Behnken's design of experiments (BBDOEs). This article demonstrates the methodology for predictive modeling and multi-response optimization of machining accuracy and surface quality to enhance the hole quality in Al-SiC based MMC, employing response surface methodology (RSM) and desirability function approach (DFA). Finally, a novel approach has been proposed for economic analysis which estimated the total machining cost per part of rupees 211.08 during EDM of Al-SiC MMC under optimum machining conditions. Thereafter, under the influence of discharge current several observations are performed on machined surface morphology and hole characteristics by scanning electron microscope to establish the process. The result shows that discharge current has the significant contribution (38.16% for Ra, 37.12% in case of OC) in degradation of surface finish as well as the dimensional deviation of hole diameter, especially overcut. The machining data generated for the Al-SiC MMC will be useful for the industry.\",\"PeriodicalId\":51873,\"journal\":{\"name\":\"Manufacturing Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1051/mfreview/2020018\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/mfreview/2020018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2020018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 12

摘要

由于金属基复合材料的广泛工程应用,特别是在汽车、航空航天、军事和电力工业;实现具有复杂几何形状和尺寸的加工成品的所需形状和轮廓是一项非常具有挑战性的任务。本试验研究了新型22wt增强铝基复合材料的电火花加工。使用黄铜电极分析了与表面粗糙度和过切有关的加工零件质量。基于Box-Behnken实验设计(bbdo),考虑5个加工参数(放电电流、间隙电压、脉冲开启时间、脉冲关闭时间和冲洗压力),进行了46组实验试验。采用响应面法(RSM)和期望函数法(DFA)对基于Al-SiC的MMC加工精度和表面质量进行预测建模和多响应优化,以提高孔质量。最后,提出了一种新的经济分析方法,在最优加工条件下,对铝-碳化硅复合材料电火花加工过程中每零件的总加工成本进行了估算。然后,在放电电流的影响下,通过扫描电镜对加工表面形貌和空穴特征进行了多次观察,建立了该工艺。结果表明,放电电流对表面光洁度的影响(Ra为38.16%,OC为37.12%)和孔径尺寸偏差(特别是过切)有显著影响。本文所得到的加工数据对铝碳化硅MMC具有一定的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis, predictive modelling and multi-response optimization in electrical discharge machining of Al-22%SiC metal matrix composite for minimization of surface roughness and hole overcut
Due to the widespread engineering applications of metal matrix composites especially in automotive, aerospace, military, and electricity industries; the achievement of desired shape and contour of the machined end product with intricate geometry and dimensions that are very challenging task. This experimental investigation deals with electrical discharge machining of newly engineered metal matrix composite of aluminum reinforced with 22 wt.% of silicon carbide particles (Al-22%SiC MMC) using a brass electrode to analyze the machined part quality concerning surface roughness and overcut. Forty-six sets of experimental trials are conducted by considering five machining parameters (discharge current, gap voltage, pulse-on-time, pulse-off-time and flushing pressure) based on Box-Behnken's design of experiments (BBDOEs). This article demonstrates the methodology for predictive modeling and multi-response optimization of machining accuracy and surface quality to enhance the hole quality in Al-SiC based MMC, employing response surface methodology (RSM) and desirability function approach (DFA). Finally, a novel approach has been proposed for economic analysis which estimated the total machining cost per part of rupees 211.08 during EDM of Al-SiC MMC under optimum machining conditions. Thereafter, under the influence of discharge current several observations are performed on machined surface morphology and hole characteristics by scanning electron microscope to establish the process. The result shows that discharge current has the significant contribution (38.16% for Ra, 37.12% in case of OC) in degradation of surface finish as well as the dimensional deviation of hole diameter, especially overcut. The machining data generated for the Al-SiC MMC will be useful for the industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Manufacturing Review
Manufacturing Review ENGINEERING, MANUFACTURING-
CiteScore
5.40
自引率
12.00%
发文量
20
审稿时长
8 weeks
期刊介绍: The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信