铝价值链的起点和终点

IF 1.3 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
L. Kolbeinsen
{"title":"铝价值链的起点和终点","authors":"L. Kolbeinsen","doi":"10.1051/MATTECH/2021008","DOIUrl":null,"url":null,"abstract":"Metallic aluminium does not naturally occur in nature, and it was largely unknown, virtually a mystery, until 200 years ago. The modern aluminium production using a hydrometallurgical refining process for making alumina followed by electrolysis of this mineral was first developed in 1886 and, in principle, the same technology is still used to this day. About 90% of alumina refineries in the world use the Bayer process for refining Bauxite ore. It is very efficient, but it can only be used on high quality bauxite with low content of admixtures, especially silicon. The Bayer process also generates a Bauxite Residue (BR), maybe better known as Red Mud (RM) which is a thick red-brown, high-basicity paste consisting of silicon, iron, aluminium, titanium and others. The International Institute of Aluminium estimates that since 1886 almost a billion tonnes of aluminium were produced around the world with three fourths of this amount still being in use today, of which about 35% is located in buildings and structures, 30% in electric cables and equipment and 30% in transport. Aluminium scrap is collected all over the world. In the home, it mostly consists of aluminium beverage cans. It is claimed that 1 ton of recycled empty beverage cans save 8 tons of bauxite, 4 kg of various fluorides and 14 kWh of electricity. Additionally, recycling aluminium significantly reduces the negative environmental impact of ever-expanding RM landfills. As the idea of environmental responsibility is gaining more and more traction, separate household scrap recycling is becoming more and more popular around the world. How challenges related to such activity can be met will be the main topic of this paper alongside discussing new developments for alumina production without RM generation.","PeriodicalId":43816,"journal":{"name":"Materiaux & Techniques","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The beginning and the end of the aluminium value chain\",\"authors\":\"L. Kolbeinsen\",\"doi\":\"10.1051/MATTECH/2021008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metallic aluminium does not naturally occur in nature, and it was largely unknown, virtually a mystery, until 200 years ago. The modern aluminium production using a hydrometallurgical refining process for making alumina followed by electrolysis of this mineral was first developed in 1886 and, in principle, the same technology is still used to this day. About 90% of alumina refineries in the world use the Bayer process for refining Bauxite ore. It is very efficient, but it can only be used on high quality bauxite with low content of admixtures, especially silicon. The Bayer process also generates a Bauxite Residue (BR), maybe better known as Red Mud (RM) which is a thick red-brown, high-basicity paste consisting of silicon, iron, aluminium, titanium and others. The International Institute of Aluminium estimates that since 1886 almost a billion tonnes of aluminium were produced around the world with three fourths of this amount still being in use today, of which about 35% is located in buildings and structures, 30% in electric cables and equipment and 30% in transport. Aluminium scrap is collected all over the world. In the home, it mostly consists of aluminium beverage cans. It is claimed that 1 ton of recycled empty beverage cans save 8 tons of bauxite, 4 kg of various fluorides and 14 kWh of electricity. Additionally, recycling aluminium significantly reduces the negative environmental impact of ever-expanding RM landfills. As the idea of environmental responsibility is gaining more and more traction, separate household scrap recycling is becoming more and more popular around the world. How challenges related to such activity can be met will be the main topic of this paper alongside discussing new developments for alumina production without RM generation.\",\"PeriodicalId\":43816,\"journal\":{\"name\":\"Materiaux & Techniques\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materiaux & Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/MATTECH/2021008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiaux & Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/MATTECH/2021008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

金属铝并不是自然产生的,直到200年前,它在很大程度上是未知的,实际上是一个谜。现代铝生产首先是在1886年开发的,使用湿法冶金精炼工艺制造氧化铝,然后电解这种矿物,原则上,相同的技术至今仍在使用。世界上约90%的氧化铝精炼厂采用拜耳法精炼铝土矿矿石,效率很高,但只能用于外加剂含量低的优质铝土矿,尤其是硅。拜耳法还会产生铝土矿渣(BR),也就是人们常说的红泥(RM),它是一种粘稠的红褐色高碱度浆料,由硅、铁、铝、钛等组成。国际铝业协会估计,自1886年以来,全球生产了近10亿吨铝,其中四分之三至今仍在使用,其中约35%用于建筑物和结构,30%用于电缆和设备,30%用于运输。世界各地都在收集废铝。在家里,它主要由铝制饮料罐组成。据称,每回收1吨空饮料罐可节省8吨铝土矿、4公斤各种氟化物和14千瓦时的电力。此外,回收铝显著减少了不断扩大的RM垃圾填埋场对环境的负面影响。随着环境责任的理念越来越受到关注,生活垃圾的分类回收在世界范围内越来越受欢迎。如何应对与此类活动相关的挑战将是本文的主要主题,同时讨论没有RM产生的氧化铝生产的新发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The beginning and the end of the aluminium value chain
Metallic aluminium does not naturally occur in nature, and it was largely unknown, virtually a mystery, until 200 years ago. The modern aluminium production using a hydrometallurgical refining process for making alumina followed by electrolysis of this mineral was first developed in 1886 and, in principle, the same technology is still used to this day. About 90% of alumina refineries in the world use the Bayer process for refining Bauxite ore. It is very efficient, but it can only be used on high quality bauxite with low content of admixtures, especially silicon. The Bayer process also generates a Bauxite Residue (BR), maybe better known as Red Mud (RM) which is a thick red-brown, high-basicity paste consisting of silicon, iron, aluminium, titanium and others. The International Institute of Aluminium estimates that since 1886 almost a billion tonnes of aluminium were produced around the world with three fourths of this amount still being in use today, of which about 35% is located in buildings and structures, 30% in electric cables and equipment and 30% in transport. Aluminium scrap is collected all over the world. In the home, it mostly consists of aluminium beverage cans. It is claimed that 1 ton of recycled empty beverage cans save 8 tons of bauxite, 4 kg of various fluorides and 14 kWh of electricity. Additionally, recycling aluminium significantly reduces the negative environmental impact of ever-expanding RM landfills. As the idea of environmental responsibility is gaining more and more traction, separate household scrap recycling is becoming more and more popular around the world. How challenges related to such activity can be met will be the main topic of this paper alongside discussing new developments for alumina production without RM generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materiaux & Techniques
Materiaux & Techniques MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.50
自引率
11.10%
发文量
20
期刊介绍: Matériaux & Techniques informs you, through high-quality and peer-reviewed research papers on research and progress in the domain of materials: physical-chemical characterization, implementation, resistance of materials in their environment (properties of use, modelling)... The journal concerns all materials, metals and alloys, nanotechnology, plastics, elastomers, composite materials, glass or ceramics. This journal for materials scientists, chemists, physicists, ceramicists, engineers, metallurgists and students provides 6 issues per year plus a special issue. Each issue, in addition to scientific articles on specialized topics, also contains selected technical news (conference announcements, new products etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信