{"title":"高温纳米压痕法表征环氧树脂的老化","authors":"B. Passilly, R. Delannoy","doi":"10.1051/MATTECH/2019004","DOIUrl":null,"url":null,"abstract":"This article aims to understand better the mechanical properties and behavior of organic matrix composite materials under elevated temperature conditions. Two specific specimens of cured RTM6 epoxy resin are tested with DMA analysis: one being unaged and the other one aged for 5000 h at 130 °C under ambient air. Anti-plasticization effects seem to occur on aged resin. Series of nano-indentation tests are carried out from the surface to the core of the sample so as to measure gradient properties of the resin, at temperatures up to 150 °C using a high temperature indentation machine prototype. Thermo-oxidation phenomena involve oxidized layer formation during thermal ageing of the epoxy resin which is characterized through measurements of indentation Young’s modulus. After aged treatment, the variation of Young’s modulus of the oxidized layer at the surface of the sample is not clearly affected by the increasing test temperature whereas Young’s modulus of the core of the sample is decreasing significantly with the temperature test as on unaged epoxy resin. Thus, asymptotic growing of the oxidized layer is then confirmed.","PeriodicalId":43816,"journal":{"name":"Materiaux & Techniques","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Characterization of the ageing of an epoxy resin using high temperature nanoindentation\",\"authors\":\"B. Passilly, R. Delannoy\",\"doi\":\"10.1051/MATTECH/2019004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article aims to understand better the mechanical properties and behavior of organic matrix composite materials under elevated temperature conditions. Two specific specimens of cured RTM6 epoxy resin are tested with DMA analysis: one being unaged and the other one aged for 5000 h at 130 °C under ambient air. Anti-plasticization effects seem to occur on aged resin. Series of nano-indentation tests are carried out from the surface to the core of the sample so as to measure gradient properties of the resin, at temperatures up to 150 °C using a high temperature indentation machine prototype. Thermo-oxidation phenomena involve oxidized layer formation during thermal ageing of the epoxy resin which is characterized through measurements of indentation Young’s modulus. After aged treatment, the variation of Young’s modulus of the oxidized layer at the surface of the sample is not clearly affected by the increasing test temperature whereas Young’s modulus of the core of the sample is decreasing significantly with the temperature test as on unaged epoxy resin. Thus, asymptotic growing of the oxidized layer is then confirmed.\",\"PeriodicalId\":43816,\"journal\":{\"name\":\"Materiaux & Techniques\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materiaux & Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/MATTECH/2019004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiaux & Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/MATTECH/2019004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Characterization of the ageing of an epoxy resin using high temperature nanoindentation
This article aims to understand better the mechanical properties and behavior of organic matrix composite materials under elevated temperature conditions. Two specific specimens of cured RTM6 epoxy resin are tested with DMA analysis: one being unaged and the other one aged for 5000 h at 130 °C under ambient air. Anti-plasticization effects seem to occur on aged resin. Series of nano-indentation tests are carried out from the surface to the core of the sample so as to measure gradient properties of the resin, at temperatures up to 150 °C using a high temperature indentation machine prototype. Thermo-oxidation phenomena involve oxidized layer formation during thermal ageing of the epoxy resin which is characterized through measurements of indentation Young’s modulus. After aged treatment, the variation of Young’s modulus of the oxidized layer at the surface of the sample is not clearly affected by the increasing test temperature whereas Young’s modulus of the core of the sample is decreasing significantly with the temperature test as on unaged epoxy resin. Thus, asymptotic growing of the oxidized layer is then confirmed.
期刊介绍:
Matériaux & Techniques informs you, through high-quality and peer-reviewed research papers on research and progress in the domain of materials: physical-chemical characterization, implementation, resistance of materials in their environment (properties of use, modelling)... The journal concerns all materials, metals and alloys, nanotechnology, plastics, elastomers, composite materials, glass or ceramics. This journal for materials scientists, chemists, physicists, ceramicists, engineers, metallurgists and students provides 6 issues per year plus a special issue. Each issue, in addition to scientific articles on specialized topics, also contains selected technical news (conference announcements, new products etc.).