{"title":"熵在过程冶金中的(爱与恨)作用","authors":"H. Tveit, L. Kolbeinsen","doi":"10.1051/mattech/2019028","DOIUrl":null,"url":null,"abstract":"Process metallurgy is the basis for the production, refining and recycling of metals and is based on knowledge of transport phenomena, thermodynamics and reaction kinetics, and of their interaction in high-temperature, heterogeneous metallurgical processes. The entropy concept is crucial in describing such systems, but, because entropy is not directly observable, some effort is required to grasp the role of entropy in process metallurgy. In this paper, we will give some examples of how entropy has a positive effect on efforts to reach the process objectives in some cases, while in other cases, entropy acts in contradiction to the desired results. In order to do this, it is necessary to have a closer look at both the entropy concept itself as well as at other functions like free energy and exergy since they encompass entropy. The chosen case is the production of silicon. It is the huge entropy change in the process that is utilized. The case is not chosen arbitrary. Indeed, it is the authors’ strong belief that silicon will be one of the foundations for the environmental and energy future planned for in the “Paris-agreement”. We will also explore relatively recent research in physics and thermodynamics that led to the description of the concepts like “dissipative systems and structures”. Dissipative systems are thermodynamically open systems, operating out of, and often far from thermodynamic equilibrium and exhibit dynamical regimes that are in some sense in a reproducible self-organized steady state. Such structures can arise almost everywhere provided this structure, feeding on low entropy resources, dissipates entropy generated in the form of heat and waste material in parallel with the wanted products/results. Examples range from metallurgical processes to the emergence of industrial symbiosis.","PeriodicalId":43816,"journal":{"name":"Materiaux & Techniques","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The (love & hate) role of entropy in process metallurgy\",\"authors\":\"H. Tveit, L. Kolbeinsen\",\"doi\":\"10.1051/mattech/2019028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Process metallurgy is the basis for the production, refining and recycling of metals and is based on knowledge of transport phenomena, thermodynamics and reaction kinetics, and of their interaction in high-temperature, heterogeneous metallurgical processes. The entropy concept is crucial in describing such systems, but, because entropy is not directly observable, some effort is required to grasp the role of entropy in process metallurgy. In this paper, we will give some examples of how entropy has a positive effect on efforts to reach the process objectives in some cases, while in other cases, entropy acts in contradiction to the desired results. In order to do this, it is necessary to have a closer look at both the entropy concept itself as well as at other functions like free energy and exergy since they encompass entropy. The chosen case is the production of silicon. It is the huge entropy change in the process that is utilized. The case is not chosen arbitrary. Indeed, it is the authors’ strong belief that silicon will be one of the foundations for the environmental and energy future planned for in the “Paris-agreement”. We will also explore relatively recent research in physics and thermodynamics that led to the description of the concepts like “dissipative systems and structures”. Dissipative systems are thermodynamically open systems, operating out of, and often far from thermodynamic equilibrium and exhibit dynamical regimes that are in some sense in a reproducible self-organized steady state. Such structures can arise almost everywhere provided this structure, feeding on low entropy resources, dissipates entropy generated in the form of heat and waste material in parallel with the wanted products/results. Examples range from metallurgical processes to the emergence of industrial symbiosis.\",\"PeriodicalId\":43816,\"journal\":{\"name\":\"Materiaux & Techniques\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materiaux & Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/mattech/2019028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiaux & Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mattech/2019028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The (love & hate) role of entropy in process metallurgy
Process metallurgy is the basis for the production, refining and recycling of metals and is based on knowledge of transport phenomena, thermodynamics and reaction kinetics, and of their interaction in high-temperature, heterogeneous metallurgical processes. The entropy concept is crucial in describing such systems, but, because entropy is not directly observable, some effort is required to grasp the role of entropy in process metallurgy. In this paper, we will give some examples of how entropy has a positive effect on efforts to reach the process objectives in some cases, while in other cases, entropy acts in contradiction to the desired results. In order to do this, it is necessary to have a closer look at both the entropy concept itself as well as at other functions like free energy and exergy since they encompass entropy. The chosen case is the production of silicon. It is the huge entropy change in the process that is utilized. The case is not chosen arbitrary. Indeed, it is the authors’ strong belief that silicon will be one of the foundations for the environmental and energy future planned for in the “Paris-agreement”. We will also explore relatively recent research in physics and thermodynamics that led to the description of the concepts like “dissipative systems and structures”. Dissipative systems are thermodynamically open systems, operating out of, and often far from thermodynamic equilibrium and exhibit dynamical regimes that are in some sense in a reproducible self-organized steady state. Such structures can arise almost everywhere provided this structure, feeding on low entropy resources, dissipates entropy generated in the form of heat and waste material in parallel with the wanted products/results. Examples range from metallurgical processes to the emergence of industrial symbiosis.
期刊介绍:
Matériaux & Techniques informs you, through high-quality and peer-reviewed research papers on research and progress in the domain of materials: physical-chemical characterization, implementation, resistance of materials in their environment (properties of use, modelling)... The journal concerns all materials, metals and alloys, nanotechnology, plastics, elastomers, composite materials, glass or ceramics. This journal for materials scientists, chemists, physicists, ceramicists, engineers, metallurgists and students provides 6 issues per year plus a special issue. Each issue, in addition to scientific articles on specialized topics, also contains selected technical news (conference announcements, new products etc.).