开发NIS固体密度流体静压称重系统,重量可达20公斤

Q3 Engineering
M. Hamdy, M. Bayoumi, A. Abuelezz, A. Eltawil
{"title":"开发NIS固体密度流体静压称重系统,重量可达20公斤","authors":"M. Hamdy, M. Bayoumi, A. Abuelezz, A. Eltawil","doi":"10.1051/ijmqe/2020006","DOIUrl":null,"url":null,"abstract":"This paper presents a developed design and construction to improve the performance and increasing the density measuring capability of the previous Hydrostatic Weighing Apparatus (HWA-NIS) at the National Institute of Standards (NIS) up to 20 kg. The previous (HWA-NIS) has been constructed up to 10 kg on 2014. The 2-Positions mass handler in the previous (HWA) was developed with 4-Positions pentagon shape to be able to make handling for individual masses in a group at once, when transferring the traceability from the primary standard “the Silicon Sphere” to the standard masses in the density scale weighing process. The weighing pan in the previous (HWA) was developed with four suspension wires with a diameter of 0.3 mm each, leads to reduce the surface tension affect on the measurement uncertainty by factor four times. The density of the standard masses in the range from 2 kg up to 20 kg were measured with an improved expanded uncertainty from 0.150 kg/m3to 0.078 kg/m3respectively due to reducing the effect of surface tension via the developed design of the weighing pan.","PeriodicalId":38371,"journal":{"name":"International Journal of Metrology and Quality Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing the NIS solid density hydrostatic weighing system up to 20 kg\",\"authors\":\"M. Hamdy, M. Bayoumi, A. Abuelezz, A. Eltawil\",\"doi\":\"10.1051/ijmqe/2020006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a developed design and construction to improve the performance and increasing the density measuring capability of the previous Hydrostatic Weighing Apparatus (HWA-NIS) at the National Institute of Standards (NIS) up to 20 kg. The previous (HWA-NIS) has been constructed up to 10 kg on 2014. The 2-Positions mass handler in the previous (HWA) was developed with 4-Positions pentagon shape to be able to make handling for individual masses in a group at once, when transferring the traceability from the primary standard “the Silicon Sphere” to the standard masses in the density scale weighing process. The weighing pan in the previous (HWA) was developed with four suspension wires with a diameter of 0.3 mm each, leads to reduce the surface tension affect on the measurement uncertainty by factor four times. The density of the standard masses in the range from 2 kg up to 20 kg were measured with an improved expanded uncertainty from 0.150 kg/m3to 0.078 kg/m3respectively due to reducing the effect of surface tension via the developed design of the weighing pan.\",\"PeriodicalId\":38371,\"journal\":{\"name\":\"International Journal of Metrology and Quality Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Metrology and Quality Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ijmqe/2020006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metrology and Quality Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ijmqe/2020006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种改进的设计和结构,以提高美国国家标准局(NIS)以前的液体静压称重仪(HWA-NIS)的性能,并将其密度测量能力提高到20公斤。之前的(HWA-NIS)在2014年建造了10公斤。在之前的(HWA)中,2位质量处理器被开发为4位五边形,以便在密度秤称重过程中将可追溯性从主要标准“硅球”转移到标准质量时,能够一次处理组中的单个质量。前一种称重盘采用4根直径为0.3 mm的悬丝,将表面张力对测量不确定度的影响降低了1 / 4。通过改进称重盘的设计,减少了表面张力的影响,提高了扩展不确定度,测量了2 ~ 20 kg范围内标准质量的密度,分别从0.150 kg/m3到0.078 kg/m3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing the NIS solid density hydrostatic weighing system up to 20 kg
This paper presents a developed design and construction to improve the performance and increasing the density measuring capability of the previous Hydrostatic Weighing Apparatus (HWA-NIS) at the National Institute of Standards (NIS) up to 20 kg. The previous (HWA-NIS) has been constructed up to 10 kg on 2014. The 2-Positions mass handler in the previous (HWA) was developed with 4-Positions pentagon shape to be able to make handling for individual masses in a group at once, when transferring the traceability from the primary standard “the Silicon Sphere” to the standard masses in the density scale weighing process. The weighing pan in the previous (HWA) was developed with four suspension wires with a diameter of 0.3 mm each, leads to reduce the surface tension affect on the measurement uncertainty by factor four times. The density of the standard masses in the range from 2 kg up to 20 kg were measured with an improved expanded uncertainty from 0.150 kg/m3to 0.078 kg/m3respectively due to reducing the effect of surface tension via the developed design of the weighing pan.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Metrology and Quality Engineering
International Journal of Metrology and Quality Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
1.70
自引率
0.00%
发文量
8
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信