NIS中子辐照设备的校准和计量应用特性

Q3 Engineering
A. El-Sersy, E. Sayed, S. H. Nagib, R. H. Bakr, R. Mahmoud
{"title":"NIS中子辐照设备的校准和计量应用特性","authors":"A. El-Sersy, E. Sayed, S. H. Nagib, R. H. Bakr, R. Mahmoud","doi":"10.1051/IJMQE/2021007","DOIUrl":null,"url":null,"abstract":"In this study, the Neutron Irradiation Facility (NIF) of the National Institute of Standards (NIS) was characterized for metrological applications to improve the accuracy of the calibration process. The NIS neutron irradiation facility consists of a 5 Ci Am-Be and 0.1 μg Cf-252 sources. The flux and dose rate of the Am-Be source was calculated by using MCNP5 code simulation at different distances from the source. The dose rate delivered by the source was determined using NM2-neutron monitor at different source-to-detector distances. A comparison between the measured and the calculated dose rate was performed and the deviation between them was explained in the skeletal arrangement of room scattering contribution. A shadow cone was designed and constructed to determine the scattering contribution at different source-to-detector distances. The optimum source-distance used for calibration was specified. It was found that the Am-Be calculated flux vary with distances from about 107–104 (n/cm2.S−1). The measured and the calculated dose rates were in agreement up to 150 cm distance from the source center after which the measured dose was greater than that calculated. The determined neutron scattering calculated from the measured-to-calculate dose ratio increased from 7% to 25% with increased distances from 150 to 300 cm. Moreover, the standard dose used in the calibration should be measured by a standard neutron monitor at each distance due to the higher value of the room scattering contribution where the optimum distance for calibration was 150 cm. The combined uncertainty of the measured neutron dose was 4.04%.","PeriodicalId":38371,"journal":{"name":"International Journal of Metrology and Quality Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of NIS neutron irradiation facility for calibration and metrological application\",\"authors\":\"A. El-Sersy, E. Sayed, S. H. Nagib, R. H. Bakr, R. Mahmoud\",\"doi\":\"10.1051/IJMQE/2021007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the Neutron Irradiation Facility (NIF) of the National Institute of Standards (NIS) was characterized for metrological applications to improve the accuracy of the calibration process. The NIS neutron irradiation facility consists of a 5 Ci Am-Be and 0.1 μg Cf-252 sources. The flux and dose rate of the Am-Be source was calculated by using MCNP5 code simulation at different distances from the source. The dose rate delivered by the source was determined using NM2-neutron monitor at different source-to-detector distances. A comparison between the measured and the calculated dose rate was performed and the deviation between them was explained in the skeletal arrangement of room scattering contribution. A shadow cone was designed and constructed to determine the scattering contribution at different source-to-detector distances. The optimum source-distance used for calibration was specified. It was found that the Am-Be calculated flux vary with distances from about 107–104 (n/cm2.S−1). The measured and the calculated dose rates were in agreement up to 150 cm distance from the source center after which the measured dose was greater than that calculated. The determined neutron scattering calculated from the measured-to-calculate dose ratio increased from 7% to 25% with increased distances from 150 to 300 cm. Moreover, the standard dose used in the calibration should be measured by a standard neutron monitor at each distance due to the higher value of the room scattering contribution where the optimum distance for calibration was 150 cm. The combined uncertainty of the measured neutron dose was 4.04%.\",\"PeriodicalId\":38371,\"journal\":{\"name\":\"International Journal of Metrology and Quality Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Metrology and Quality Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/IJMQE/2021007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metrology and Quality Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/IJMQE/2021007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,美国国家标准研究所(NIS)的中子辐照设施(NIF)被表征为计量应用,以提高校准过程的准确性。NIS中子辐照设施由5 Ci Am-Be和0.1 μg Cf-252源组成。利用MCNP5程序模拟计算了Am-Be源在不同距离下的通量和剂量率。在不同的源到探测器的距离上,用中子监测仪测定了源释放的剂量率。对测量剂量率和计算剂量率进行了比较,并解释了室内散射贡献的骨架排列中两者之间的偏差。设计并构造了一个阴影锥,以确定不同源到探测器距离下的散射贡献。确定了用于标定的最佳源距。Am-Be计算的通量随距离的变化在107 ~ 104 (n/cm2.S−1)之间。在距辐射源中心150cm范围内,测量剂量率与计算剂量率一致,此后测量剂量大于计算剂量。根据测量与计算剂量比计算出的中子散射随着距离从150厘米增加到300厘米,从7%增加到25%。此外,校准中使用的标准剂量应在每个距离上由标准中子监测器测量,因为房间散射贡献值较高,其中校准的最佳距离为150 cm。所测中子剂量的综合不确定度为4.04%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of NIS neutron irradiation facility for calibration and metrological application
In this study, the Neutron Irradiation Facility (NIF) of the National Institute of Standards (NIS) was characterized for metrological applications to improve the accuracy of the calibration process. The NIS neutron irradiation facility consists of a 5 Ci Am-Be and 0.1 μg Cf-252 sources. The flux and dose rate of the Am-Be source was calculated by using MCNP5 code simulation at different distances from the source. The dose rate delivered by the source was determined using NM2-neutron monitor at different source-to-detector distances. A comparison between the measured and the calculated dose rate was performed and the deviation between them was explained in the skeletal arrangement of room scattering contribution. A shadow cone was designed and constructed to determine the scattering contribution at different source-to-detector distances. The optimum source-distance used for calibration was specified. It was found that the Am-Be calculated flux vary with distances from about 107–104 (n/cm2.S−1). The measured and the calculated dose rates were in agreement up to 150 cm distance from the source center after which the measured dose was greater than that calculated. The determined neutron scattering calculated from the measured-to-calculate dose ratio increased from 7% to 25% with increased distances from 150 to 300 cm. Moreover, the standard dose used in the calibration should be measured by a standard neutron monitor at each distance due to the higher value of the room scattering contribution where the optimum distance for calibration was 150 cm. The combined uncertainty of the measured neutron dose was 4.04%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Metrology and Quality Engineering
International Journal of Metrology and Quality Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
1.70
自引率
0.00%
发文量
8
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信